Healthy Diet and Lifestyle Improve the Gut Microbiota and Help Combat Fungal Infection (2024)

1. Honda K., Littman D.R. The microbiome in infectious disease and inflammation. Annu. Rev. Immunol. 2012;30:759–795. doi:10.1146/annurev-immunol-020711-074937. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. Qin J., Li R., Raes J., Arumugam M., Burgdorf K.S., Manichanh C., Nielsen T., Pons N., Levenez F., Yamada T., et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65. doi:10.1038/nature08821. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Sheehan D., Moran C., Shanahan F. The microbiota in inflammatory bowel disease. J. Gastroenterol. 2015;50:495–507. doi:10.1007/s00535-015-1064-1. [PubMed] [CrossRef] [Google Scholar]

4. Nishida A., Inoue R., Inatomi O., Bamba S., Naito Y., Andoh A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin. J. Gastroenterol. 2018;11:1–10. doi:10.1007/s12328-017-0813-5. [PubMed] [CrossRef] [Google Scholar]

5. Sartor R.B. Microbial influences in inflammatory bowel diseases. Gastroenterology. 2008;134:577–594. doi:10.1053/j.gastro.2007.11.059. [PubMed] [CrossRef] [Google Scholar]

6. Andoh A. Physiological Role of Gut Microbiota for Maintaining Human Health. Digestion. 2016;93:176–181. doi:10.1159/000444066. [PubMed] [CrossRef] [Google Scholar]

7. Poulain D., Sendid B., Standaert-Vitse A., Fradin C., Jouault T., Jawhara S., Colombel J.F. Yeasts: Neglected pathogens. Dig. Dis. 2009;27((Suppl. 1)):104–110. doi:10.1159/000268129. [PubMed] [CrossRef] [Google Scholar]

8. Jawhara S. How Gut Bacterial Dysbiosis Can Promote Candida albicans Overgrowth during Colonic Inflammation. Microorganisms. 2022;10:1014. doi:10.3390/microorganisms10051014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Chaffin W.L. Candida albicans cell wall proteins. Microbiol. Mol. Biol. Rev. 2008;72:495–544. doi:10.1128/MMBR.00032-07. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Jawhara S. How Fungal Glycans Modulate Platelet Activation via Toll-Like Receptors Contributing to the Escape of Candida albicans from the Immune Response. Antibiotics. 2020;9:385. doi:10.3390/antibiotics9070385. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Poulain D. Candida albicans, plasticity and pathogenesis. Crit. Rev. Microbiol. 2015;41:208–217. doi:10.3109/1040841X.2013.813904. [PubMed] [CrossRef] [Google Scholar]

12. Lenardon M.D., Munro C.A., Gow N.A. Chitin synthesis and fungal pathogenesis. Curr. Opin. Microbiol. 2010;13:416–423. doi:10.1016/j.mib.2010.05.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Trinel P.A., Borg-von-Zepelin M., Lepage G., Jouault T., Mackenzie D., Poulain D. Isolation and preliminary characterization of the 14- to 18-kilodalton Candida albicans antigen as a phospholipomannan containing beta-1,2-linked oligomannosides. Infect. Immun. 1993;61:4398–4405. doi:10.1128/iai.61.10.4398-4405.1993. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Hofs S., Mogavero S., Hube B. Interaction of Candida albicans with host cells: Virulence factors, host defense, escape strategies, and the microbiota. J. Microbiol. 2016;54:149–169. doi:10.1007/s12275-016-5514-0. [PubMed] [CrossRef] [Google Scholar]

15. Konig A., Hube B., Kasper L. The Dual Function of the Fungal Toxin Candidalysin during Candida albicans-Macrophage Interaction and Virulence. Toxins. 2020;12:469. doi:10.3390/toxins12080469. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Leonardi I., Gao I.H., Lin W.Y., Allen M., Li X.V., Fiers W.D., De Celie M.B., Putzel G.G., Yantiss R.K., Johncilla M., et al. Mucosal fungi promote gut barrier function and social behavior via Type 17 immunity. Cell. 2022;185:831–846.E814. doi:10.1016/j.cell.2022.01.017. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Break T.J., Oikonomou V., Dutzan N., Desai J.V., Swidergall M., Freiwald T., Chauss D., Harrison O.J., Alejo J., Williams D.W., et al. Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science. 2021;371:eaay5731. doi:10.1126/science.aay5731. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Swidergall M., LeibundGut-Landmann S. Immunosurveillance of Candida albicans commensalism by the adaptive immune system. Mucosal Immunol. 2022;15:829–836. doi:10.1038/s41385-022-00536-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Standaert-Vitse A., Jouault T., Vandewalle P., Mille C., Seddik M., Sendid B., Mallet J.M., Colombel J.F., Poulain D. Candida albicans is an immunogen for anti-Saccharomyces cerevisiae antibody markers of Crohn’s disease. Gastroenterology. 2006;130:1764–1775. doi:10.1053/j.gastro.2006.02.009. [PubMed] [CrossRef] [Google Scholar]

20. Jawhara S., Thuru X., Standaert-Vitse A., Jouault T., Mordon S., Sendid B., Desreumaux P., Poulain D. Colonization of mice by Candida albicans is promoted by chemically induced colitis and augments inflammatory responses through galectin-3. J. Infect. Dis. 2008;197:972–980. doi:10.1086/528990. [PubMed] [CrossRef] [Google Scholar]

21. Sendid B., Dotan N., Nseir S., Savaux C., Vandewalle P., Standaert A., Zerimech F., Guery B.P., Dukler A., Colombel J.F., et al. Antibodies against glucan, chitin, and Saccharomyces cerevisiae mannan as new biomarkers of Candida albicans infection that complement tests based on C. albicans mannan. Clin. Vaccine Immunol. 2008;15:1868–1877. doi:10.1128/CVI.00200-08. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Sendid B., Quinton J.F., Charrier G., Goulet O., Cortot A., Grandbastien B., Poulain D., Colombel J.F. Anti-Saccharomyces cerevisiae mannan antibodies in familial Crohn’s disease. Am. J. Gastroenterol. 1998;93:1306–1310. doi:10.1111/j.1572-0241.1998.00415.x. [PubMed] [CrossRef] [Google Scholar]

23. Sendid B., Jawhara S., Sarter H., Maboudou P., Thierny C., Gower-Rousseau C., Colombel J.F., Poulain D. Uric acid levels are independent of anti-Saccharomyces cerevisiae antibodies (ASCA) in Crohn’s disease: A reappraisal of the role of S. cerevisiae in this setting. Virulence. 2018;9:1224–1229. doi:10.1080/21505594.2018.1496779. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Jawhara S., Mogensen E., Maggiotto F., Fradin C., Sarazin A., Dubuquoy L., Maes E., Guerardel Y., Janbon G., Poulain D. Murine model of dextran sulfate sodium-induced colitis reveals Candida glabrata virulence and contribution of beta-mannosyltransferases. J. Biol. Chem. 2012;287:11313–11324. doi:10.1074/jbc.M111.329300. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. Jawhara S., Poulain D. Saccharomyces boulardii decreases inflammation and intestinal colonization by Candida albicans in a mouse model of chemically-induced colitis. Med. Mycol. 2007;45:691–700. doi:10.1080/13693780701523013. [PubMed] [CrossRef] [Google Scholar]

26. Jawhara S., Habib K., Maggiotto F., Pignede G., Vandekerckove P., Maes E., Dubuquoy L., Fontaine T., Guerardel Y., Poulain D. Modulation of intestinal inflammation by yeasts and cell wall extracts: Strain dependence and unexpected anti-inflammatory role of glucan fractions. PLoS ONE. 2012;7:e40648. doi:10.1371/journal.pone.0040648. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Jawhara S. Editorial of Special Issue Human Pathogenic Fungi: Host-Pathogen Interactions and Virulence. Microorganisms. 2023;11:963. doi:10.3390/microorganisms11040963. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Charlet R., Pruvost Y., Tumba G., Istel F., Poulain D., Kuchler K., Sendid B., Jawhara S. Remodeling of the Candida glabrata cell wall in the gastrointestinal tract affects the gut microbiota and the immune response. Sci. Rep. 2018;8:3316. doi:10.1038/s41598-018-21422-w. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Charlet R., Bortolus C., Barbet M., Sendid B., Jawhara S. A decrease in anaerobic bacteria promotes Candida glabrata overgrowth while beta-glucan treatment restores the gut microbiota and attenuates colitis. Gut Pathog. 2018;10:50. doi:10.1186/s13099-018-0277-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Diotallevi C., Fava F., Gobbetti M., Tuohy K. Healthy dietary patterns to reduce obesity-related metabolic disease: Polyphenol-microbiome interactions unifying health effects across geography. Curr. Opin. Clin. Nutr. Metab. Care. 2020;23:437–444. doi:10.1097/MCO.0000000000000697. [PubMed] [CrossRef] [Google Scholar]

31. Kopp W. How Western Diet And Lifestyle Drive The Pandemic Of Obesity And Civilization Diseases. Diabetes Metab. Syndr. Obes. 2019;12:2221–2236. doi:10.2147/DMSO.S216791. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Hildebrandt M.A., Hoffmann C., Sherrill-Mix S.A., Keilbaugh S.A., Hamady M., Chen Y.Y., Knight R., Ahima R.S., Bushman F., Wu G.D. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology. 2009;137:1716–1724.e1–e2. doi:10.1053/j.gastro.2009.08.042. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Graham C., Mullen A., Whelan K. Obesity and the gastrointestinal microbiota: A review of associations and mechanisms. Nutr. Rev. 2015;73:376–385. doi:10.1093/nutrit/nuv004. [PubMed] [CrossRef] [Google Scholar]

34. Graf D., Di Cagno R., Fak F., Flint H.J., Nyman M., Saarela M., Watzl B. Contribution of diet to the composition of the human gut microbiota. Microb. Ecol. Health Dis. 2015;26:26164. doi:10.3402/mehd.v26.26164. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

35. Cani P.D., Delzenne N.M. The gut microbiome as therapeutic target. Pharmacol. Ther. 2011;130:202–212. doi:10.1016/j.pharmthera.2011.01.012. [PubMed] [CrossRef] [Google Scholar]

36. Ji Y., Sakata Y., Tso P. Nutrient-induced inflammation in the intestine. Curr. Opin. Clin. Nutr. Metab. Care. 2011;14:315–321. doi:10.1097/MCO.0b013e3283476e74. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Laugerette F., Vors C., Geloen A., Chauvin M.A., Soulage C., Lambert-Porcheron S., Peretti N., Alligier M., Burcelin R., Laville M., et al. Emulsified lipids increase endotoxemia: Possible role in early postprandial low-grade inflammation. J. Nutr. Biochem. 2011;22:53–59. doi:10.1016/j.jnutbio.2009.11.011. [PubMed] [CrossRef] [Google Scholar]

38. Tsuzuki Y., Miyazaki J., Matsuzaki K., Okada Y., Hokari R., Kawaguchi A., Nagao S., Itoh K., Miura S. Differential modulation in the functions of intestinal dendritic cells by long- and medium-chain fatty acids. J. Gastroenterol. 2006;41:209–216. doi:10.1007/s00535-005-1747-0. [PubMed] [CrossRef] [Google Scholar]

39. Fritsch J., Garces L., Quintero M.A., Pignac-Kobinger J., Santander A.M., Fernandez I., Ban Y.J., Kwon D., Phillips M.C., Knight K., et al. Low-Fat, High-Fiber Diet Reduces Markers of Inflammation and Dysbiosis and Improves Quality of Life in Patients With Ulcerative Colitis. Clin. Gastroenterol. Hepatol. 2021;19:1189–1199.e30. doi:10.1016/j.cgh.2020.05.026. [PubMed] [CrossRef] [Google Scholar]

40. Garcia-Gamboa R., Kirchmayr M.R., Gradilla-Hernandez M.S., Perez-Brocal V., Moya A., Gonzalez-Avila M. The intestinal mycobiota and its relationship with overweight, obesity and nutritional aspects. J. Hum. Nutr. Diet. 2021;34:645–655. doi:10.1111/jhn.12864. [PubMed] [CrossRef] [Google Scholar]

41. Laffin M., Fedorak R., Zalasky A., Park H., Gill A., Agrawal A., Keshteli A., Hotte N., Madsen K.L. A high-sugar diet rapidly enhances susceptibility to colitis via depletion of luminal short-chain fatty acids in mice. Sci. Rep. 2019;9:12294. doi:10.1038/s41598-019-48749-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Do M.H., Lee E., Oh M.J., Kim Y., Park H.Y. High-Glucose or -Fructose Diet Cause Changes of the Gut Microbiota and Metabolic Disorders in Mice without Body Weight Change. Nutrients. 2018;10:761. doi:10.3390/nu10060761. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Fajstova A., Galanova N., Coufal S., Malkova J., Kostovcik M., Cermakova M., Pelantova H., Kuzma M., Sediva B., Hudcovic T., et al. Diet Rich in Simple Sugars Promotes Pro-Inflammatory Response via Gut Microbiota Alteration and TLR4 Signaling. Cells. 2020;9:2701. doi:10.3390/cells9122701. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Flint H.J. The impact of nutrition on the human microbiome. Nutr. Rev. 2012;70((Suppl. S1)):S10–S13. doi:10.1111/j.1753-4887.2012.00499.x. [PubMed] [CrossRef] [Google Scholar]

45. Clarke J.M., Young G.P., Topping D.L., Bird A.R., Cobiac L., Scherer B.L., Winkler J.G., Lockett T.J. Butyrate delivered by butyrylated starch increases distal colonic epithelial apoptosis in carcinogen-treated rats. Carcinogenesis. 2012;33:197–202. doi:10.1093/carcin/bgr254. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Hamer H.M., Jonkers D.M., Bast A., Vanhoutvin S.A., Fischer M.A., Kodde A., Troost F.J., Venema K., Brummer R.J. Butyrate modulates oxidative stress in the colonic mucosa of healthy humans. Clin. Nutr. 2009;28:88–93. doi:10.1016/j.clnu.2008.11.002. [PubMed] [CrossRef] [Google Scholar]

47. Knudsen K.E.B. Microbial degradation of whole-grain complex carbohydrates and impact on short-chain fatty acids and health. Adv. Nutr. 2015;6:206–213. doi:10.3945/an.114.007450. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Parada Venegas D., De la Fuente M.K., Landskron G., Gonzalez M.J., Quera R., Dijkstra G., Harmsen H.J.M., Faber K.N., Hermoso M.A. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front. Immunol. 2019;10:277. doi:10.3389/fimmu.2019.00277. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Fan Y., Pedersen O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021;19:55–71. doi:10.1038/s41579-020-0433-9. [PubMed] [CrossRef] [Google Scholar]

50. Nguyen L.N., Lopes L.C., Cordero R.J., Nosanchuk J.D. Sodium butyrate inhibits pathogenic yeast growth and enhances the functions of macrophages. J. Antimicrob. Chemother. 2011;66:2573–2580. doi:10.1093/jac/dkr358. [PubMed] [CrossRef] [Google Scholar]

51. Garcia C., Tebbji F., Daigneault M., Liu N.N., Kohler J.R., Allen-Vercoe E., Sellam A. The Human Gut Microbial Metabolome Modulates Fungal Growth via the TOR Signaling Pathway. mSphere. 2017;2:e00555-17. doi:10.1128/mSphere.00555-17. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Bailey M.T., Dowd S.E., Galley J.D., Hufnagle A.R., Allen R.G., Lyte M. Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation. Brain Behav. Immun. 2011;25:397–407. doi:10.1016/j.bbi.2010.10.023. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Rodriguez-Galan M.C., Correa S.G., Cejas H., Sotomayor C.E. Impaired activity of phagocytic cells in Candida albicans infection after exposure to chronic varied stress. Neuroimmunomodulation. 2001;9:193–202. doi:10.1159/000049026. [PubMed] [CrossRef] [Google Scholar]

54. Yang A.M., Inamine T., Hochrath K., Chen P., Wang L., Llorente C., Bluemel S., Hartmann P., Xu J., Koyama Y., et al. Intestinal fungi contribute to development of alcoholic liver disease. J. Clin. Invest. 2017;127:2829–2841. doi:10.1172/JCI90562. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Lang S., Duan Y., Liu J., Torralba M.G., Kuelbs C., Ventura-Cots M., Abraldes J.G., Bosques-Padilla F., Verna E.C., Brown R.S., Jr., et al. Intestinal Fungal Dysbiosis and Systemic Immune Response to Fungi in Patients With Alcoholic Hepatitis. Hepatology. 2020;71:522–538. doi:10.1002/hep.30832. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Palleja A., Mikkelsen K.H., Forslund S.K., Kashani A., Allin K.H., Nielsen T., Hansen T.H., Liang S., Feng Q., Zhang C., et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat. Microbiol. 2018;3:1255–1265. doi:10.1038/s41564-018-0257-9. [PubMed] [CrossRef] [Google Scholar]

57. Spinillo A., Capuzzo E., Acciano S., De Santolo A., Zara F. Effect of antibiotic use on the prevalence of symptomatic vulvovagin*l candidiasis. Am. J. Obstet. Gynecol. 1999;180:14–17. doi:10.1016/S0002-9378(99)70141-9. [PubMed] [CrossRef] [Google Scholar]

58. Mason K.L., Erb Downward J.R., Mason K.D., Falkowski N.R., Eaton K.A., Kao J.Y., Young V.B., Huffnagle G.B. Candida albicans and bacterial microbiota interactions in the cecum during recolonization following broad-spectrum antibiotic therapy. Infect. Immun. 2012;80:3371–3380. doi:10.1128/IAI.00449-12. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Rashid M.U., Rosenborg S., Panagiotidis G., Soderberg-Lofdal K., Weintraub A., Nord C.E. Ecological Effect of Ceftaroline-Avibactam on the Normal Human Intestinal Microbiota. Antimicrob. Agents Chemother. 2015;59:4504–4509. doi:10.1128/AAC.00530-15. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Mokeem S.A., Abduljabbar T., Al-Kheraif A.A., Alasqah M.N., Michelogiannakis D., Samaranayake L.P., Javed F. Oral Candida carriage among cigarette- and waterpipe-smokers, and electronic cigarette users. Oral. Dis. 2019;25:319–326. doi:10.1111/odi.12902. [PubMed] [CrossRef] [Google Scholar]

61. Mun M., Yap T., Alnuaimi A.D., Adams G.G., McCullough M.J. Oral candidal carriage in asymptomatic patients. Aust. Dent. J. 2016;61:190–195. doi:10.1111/adj.12335. [PubMed] [CrossRef] [Google Scholar]

62. Macgregor I.D. Effects of smoking on oral ecology. A review of the literature. Clin. Prev. Dent. 1989;11:3–7. [PubMed] [Google Scholar]

63. Hise A.G., Tomalka J., Ganesan S., Patel K., Hall B.A., Brown G.D., Fitzgerald K.A. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe. 2009;5:487–497. doi:10.1016/j.chom.2009.05.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Henson J., Yates T., Edwardson C.L., Khunti K., Talbot D., Gray L.J., Leigh T.M., Carter P., Davies M.J. Sedentary time and markers of chronic low-grade inflammation in a high risk population. PLoS ONE. 2013;8:e78350. doi:10.1371/journal.pone.0078350. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Ortega E., Collazos M.E., Maynar M., Barriga C., De la Fuente M. Stimulation of the phagocytic function of neutrophils in sedentary men after acute moderate exercise. Eur. J. Appl. Physiol. Occup. Physiol. 1993;66:60–64. doi:10.1007/BF00863401. [PubMed] [CrossRef] [Google Scholar]

66. De la Fuente M., Martin I., Ortega E. Effect of physical exercise on the phagocytic function of peritoneal macrophages from Swiss mice. Comp. Immunol. Microbiol. Infect. Dis. 1993;16:29–37. doi:10.1016/0147-9571(93)90058-D. [PubMed] [CrossRef] [Google Scholar]

67. Nguyen N.L., Pilewski J.M., Celedon J.C., Mandalapu S., Blanchard M.L., DeRicco A., Hartigan E., Alcorn J.F., Kolls J.K. Vitamin D supplementation decreases Aspergillus fumigatus specific Th2 responses in CF patients with aspergillus sensitization: A phase one open-label study. Asthma Res. Pract. 2015;1:3. doi:10.1186/s40733-015-0003-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. Khoo A.L., Chai L.Y., Koenen H.J., Kullberg B.J., Joosten I., van der Ven A.J., Netea M.G. 1,25-dihydroxyvitamin D3 modulates cytokine production induced by Candida albicans: Impact of seasonal variation of immune responses. J. Infect. Dis. 2011;203:122–130. doi:10.1093/infdis/jiq008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Bouzid D., Merzouki S., Bachiri M., Ailane S.E., Zerroug M.M. Vitamin D(3) a new drug against Candida albicans. J. Mycol. Med. 2017;27:79–82. doi:10.1016/j.mycmed.2016.10.003. [PubMed] [CrossRef] [Google Scholar]

70. Lei J., Xiao W., Zhang J., Liu F., Xin C., Zhou B., Chen W., Song Z. Antifungal activity of vitamin D(3) against Candida albicans in vitro and in vivo. Microbiol. Res. 2022;265:127200. doi:10.1016/j.micres.2022.127200. [PubMed] [CrossRef] [Google Scholar]

71. Zaaboul F., Liu Y. Vitamin E in foodstuff: Nutritional, analytical, and food technology aspects. Compr. Rev. Food Sci. Food Saf. 2022;21:964–998. doi:10.1111/1541-4337.12924. [PubMed] [CrossRef] [Google Scholar]

72. Barros S., Ribeiro A.P.D., Offenbacher S., Loewy Z.G. Anti-Inflammatory Effects of Vitamin E in Response to Candida albicans. Microorganisms. 2020;8:804. doi:10.3390/microorganisms8060804. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Belhachemi M.H., Boucherit K., Boucherit-Otmani Z., Belmir S., Benbekhti Z. Effects of ascorbic acid and α-tocopherol on the therapeutic index of amphotericin B. J. Mycol. Med. 2014;24:e137–e142. doi:10.1016/j.mycmed.2014.04.003. [PubMed] [CrossRef] [Google Scholar]

74. Shahidi F., Ambigaipalan P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annu. Rev. Food Sci. Technol. 2018;9:345–381. doi:10.1146/annurev-food-111317-095850. [PubMed] [CrossRef] [Google Scholar]

75. Huang C.B., Ebersole J.L. A novel bioactivity of omega-3 polyunsaturated fatty acids and their ester derivatives. Mol. Oral. Microbiol. 2010;25:75–80. doi:10.1111/j.2041-1014.2009.00553.x. [PubMed] [CrossRef] [Google Scholar]

76. Tran P.A., Webster T.J. Antimicrobial selenium nanoparticle coatings on polymeric medical devices. Nanotechnology. 2013;24:155101. doi:10.1088/0957-4484/24/15/155101. [PubMed] [CrossRef] [Google Scholar]

77. Rayman M.P. Selenium and human health. Lancet. 2012;379:1256–1268. doi:10.1016/S0140-6736(11)61452-9. [PubMed] [CrossRef] [Google Scholar]

78. Papp L.V., Lu J., Holmgren A., Khanna K.K. From selenium to selenoproteins: Synthesis, identity, and their role in human health. Antioxid. Redox Signal. 2007;9:775–806. doi:10.1089/ars.2007.1528. [PubMed] [CrossRef] [Google Scholar]

79. Guisbiers G., Lara H.H., Mendoza-Cruz R., Naranjo G., Vincent B.A., Peralta X.G., Nash K.L. Inhibition of Candida albicans biofilm by pure selenium nanoparticles synthesized by pulsed laser ablation in liquids. Nanomedicine. 2017;13:1095–1103. doi:10.1016/j.nano.2016.10.011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Boyne R., Arthur J.R. The response of selenium-deficient mice to Candida albicans infection. J. Nutr. 1986;116:816–822. doi:10.1093/jn/116.5.816. [PubMed] [CrossRef] [Google Scholar]

81. Hill C., Guarner F., Reid G., Gibson G.R., Merenstein D.J., Pot B., Morelli L., Canani R.B., Flint H.J., Salminen S., et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014;11:506–514. doi:10.1038/nrgastro.2014.66. [PubMed] [CrossRef] [Google Scholar]

82. Ganji-Arjenaki M., Rafieian-Kopaei M. Probiotics are a good choice in remission of inflammatory bowel diseases: A meta analysis and systematic review. J. Cell. Physiol. 2018;233:2091–2103. doi:10.1002/jcp.25911. [PubMed] [CrossRef] [Google Scholar]

83. Huang R., Wang K., Hu J. Effect of Probiotics on Depression: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients. 2016;8:483. doi:10.3390/nu8080483. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. Judkins T.C., Archer D.L., Kramer D.C., Solch R.J. Probiotics, Nutrition, and the Small Intestine. Curr. Gastroenterol. Rep. 2020;22:2. doi:10.1007/s11894-019-0740-3. [PubMed] [CrossRef] [Google Scholar]

85. Matsubara V.H., Wang Y., Bandara H., Mayer M.P.A., Samaranayake L.P. Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation. Appl. Microbiol. Biotechnol. 2016;100:6415–6426. doi:10.1007/s00253-016-7527-3. [PubMed] [CrossRef] [Google Scholar]

86. Kohler G.A., Assefa S., Reid G. Probiotic interference of Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 with the opportunistic fungal pathogen Candida albicans. Infect. Dis. Obstet. Gynecol. 2012;2012:636474. doi:10.1155/2012/636474. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

87. Rios-Covian D., Gueimonde M., Duncan S.H., Flint H.J., de los Reyes-Gavilan C.G. Enhanced butyrate formation by cross-feeding between Faecalibacterium prausnitzii and Bifidobacterium adolescentis. FEMS Microbiol. Lett. 2015;362:fnv176. doi:10.1093/femsle/fnv176. [PubMed] [CrossRef] [Google Scholar]

88. Sanchez B., Noriega L., Ruas-Madiedo P., de los Reyes-Gavilan C.G., Margolles A. Acquired resistance to bile increases fructose-6-phosphate phosphoketolase activity in Bifidobacterium. FEMS Microbiol. Lett. 2004;235:35–41. doi:10.1111/j.1574-6968.2004.tb09564.x. [PubMed] [CrossRef] [Google Scholar]

89. Bagarolli R.A., Tobar N., Oliveira A.G., Araujo T.G., Carvalho B.M., Rocha G.Z., Vecina J.F., Calisto K., Guadagnini D., Prada P.O., et al. Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice. J. Nutr. Biochem. 2017;50:16–25. doi:10.1016/j.jnutbio.2017.08.006. [PubMed] [CrossRef] [Google Scholar]

90. Bubnov R.V., Babenko L.P., Lazarenko L.M., Mokrozub V.V., Demchenko O.A., Nechypurenko O.V., Spivak M.Y. Comparative study of probiotic effects of Lactobacillus and Bifidobacteria strains on cholesterol levels, liver morphology and the gut microbiota in obese mice. EPMA J. 2017;8:357–376. doi:10.1007/s13167-017-0117-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

91. Alagumoorthi G., Jebakani D.B., Thirunavukarasu S., Ramachandaran V., Kumaresan A. Effectiveness of Wii sports- based strategy training in reducing risk of falling, falls and improving quality of life in adults with idiopathic Parkinson’s disease—A randomized comparative trial. Clin. Rehabil. 2022;36:1097–1109. doi:10.1177/02692155221089030. [PubMed] [CrossRef] [Google Scholar]

92. Messaoudi M., Lalonde R., Violle N., Javelot H., Desor D., Nejdi A., Bisson J.F., Rougeot C., Pichelin M., Cazaubiel M., et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br. J. Nutr. 2011;105:755–764. doi:10.1017/S0007114510004319. [PubMed] [CrossRef] [Google Scholar]

93. Gibson G.R., Roberfroid M.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 1995;125:1401–1412. doi:10.1093/jn/125.6.1401. [PubMed] [CrossRef] [Google Scholar]

94. Zhang X.F., Guan X.X., Tang Y.J., Sun J.F., Wang X.K., Wang W.D., Fan J.M. Clinical effects and gut microbiota changes of using probiotics, prebiotics or synbiotics in inflammatory bowel disease: A systematic review and meta-analysis. Eur. J. Nutr. 2021;60:2855–2875. doi:10.1007/s00394-021-02503-5. [PubMed] [CrossRef] [Google Scholar]

95. Liao M., Zhang Y., Qiu Y., Wu Z., Zhong Z., Zeng X., Zeng Y., Xiong L., Wen Y., Liu R. Fructooligosaccharide supplementation alleviated the pathological immune response and prevented the impairment of intestinal barrier in DSS-induced acute colitis mice. Food Funct. 2021;12:9844–9854. doi:10.1039/D1FO01147B. [PubMed] [CrossRef] [Google Scholar]

96. Rousseau V., Lepargneur J.P., Roques C., Remaud-Simeon M., Paul F. Prebiotic effects of oligosaccharides on selected vagin*l lactobacilli and pathogenic microorganisms. Anaerobe. 2005;11:145–153. doi:10.1016/j.anaerobe.2004.12.002. [PubMed] [CrossRef] [Google Scholar]

97. Valeur J., Puaschitz N.G., Midtvedt T., Berstad A. Oatmeal porridge: Impact on microflora-associated characteristics in healthy subjects. Br. J. Nutr. 2016;115:62–67. doi:10.1017/S0007114515004213. [PubMed] [CrossRef] [Google Scholar]

98. Stull V.J., Finer E., Bergmans R.S., Febvre H.P., Longhurst C., Manter D.K., Patz J.A., Weir T.L. Impact of Edible Cricket Consumption on Gut Microbiota in Healthy Adults, a Double-blind, Randomized Crossover Trial. Sci. Rep. 2018;8:10762. doi:10.1038/s41598-018-29032-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Alessandri G., Milani C., Duranti S., Mancabelli L., Ranjanoro T., Modica S., Carnevali L., Statello R., Bottacini F., Turroni F., et al. Ability of bifidobacteria to metabolize chitin-glucan and its impact on the gut microbiota. Sci. Rep. 2019;9:5755. doi:10.1038/s41598-019-42257-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

100. Ankri S., Mirelman D. Antimicrobial properties of allicin from garlic. Microbes Infect. 1999;1:125–129. doi:10.1016/S1286-4579(99)80003-3. [PubMed] [CrossRef] [Google Scholar]

101. Lemar K.M., Turner M.P., Lloyd D. Garlic (Allium sativum) as an anti-Candida agent: A comparison of the efficacy of fresh garlic and freeze-dried extracts. J. Appl. Microbiol. 2002;93:398–405. doi:10.1046/j.1365-2672.2002.01707.x. [PubMed] [CrossRef] [Google Scholar]

102. Ghannoum M.A. Inhibition of Candida adhesion to buccal epithelial cells by an aqueous extract of Allium sativum (garlic) J. Appl. Bacteriol. 1990;68:163–169. doi:10.1111/j.1365-2672.1990.tb02562.x. [PubMed] [CrossRef] [Google Scholar]

103. Low C.F., Chong P.P., Yong P.V., Lim C.S., Ahmad Z., Othman F. Inhibition of hyphae formation and SIR2 expression in Candida albicans treated with fresh Allium sativum (garlic) extract. J. Appl. Microbiol. 2008;105:2169–2177. doi:10.1111/j.1365-2672.2008.03912.x. [PubMed] [CrossRef] [Google Scholar]

104. San-Blas G., Marino L., San-Blas F., Apitz-Castro R. Effect of ajoene on dimorphism of Paracoccidioides brasiliensis. J. Med. Vet. Mycol. 1993;31:133–141. doi:10.1080/02681219380000151. [PubMed] [CrossRef] [Google Scholar]

105. Sharma S., Raj K., Riyaz M., Singh D.D. Antimicrobial Studies on Garlic Lectin. Probiotics Antimicrob. Proteins. 2022 doi:10.1007/s12602-022-10001-1. [PubMed] [CrossRef] [Google Scholar]

106. Sharma S., Singh D.D. Investigations on the Biological Activity of Allium sativum Agglutinin (ASA) Isolated from Garlic. Protein Pept. Lett. 2022;29:555–566. doi:10.2174/0929866529999220509122720. [PubMed] [CrossRef] [Google Scholar]

107. Atai Z., Ansari M., Mousavi A., Mirzaei A. In-vitro study of antifungal effects of selected herbal extracts on standard and wild strains of Candida albicans. J. Iran. Dent. Assoc. 2007;19:91–97. [Google Scholar]

108. Aneja R.K., Joshi R., Sharma C. Antimicrobial activity of Dalchini (Cinnamomum zeylanicum bark) extracts on some dental caries pathogens. J. Pharm. Res. 2009;2:1387–1390. [Google Scholar]

109. Velluti A., Sanchis V., Ramos A.J., Egido J., Marin S. Inhibitory effect of cinnamon, clove, lemongrass, oregano and palmarose essential oils on growth and fumonisin B1 production by Fusarium proliferatum in maize grain. Int. J. Food Microbiol. 2003;89:145–154. doi:10.1016/S0168-1605(03)00116-8. [PubMed] [CrossRef] [Google Scholar]

110. Carvalho P., Sá N., Lacerda I., Pataro C., Rosa L., Alves R., Lyon J., Rosa C., Johann S. Anti-candida activity of cinnamon inhibition of virulence factors of clinical strains of Candida albicans by essential oil of Cinnamomum zeylanicum. PSM Microbiol. 2018;3:4–12. [Google Scholar]

111. Gruenwald J., Freder J., Armbruester N. Cinnamon and health. Crit. Rev. Food Sci. Nutr. 2010;50:822–834. doi:10.1080/10408390902773052. [PubMed] [CrossRef] [Google Scholar]

112. Tran H.N.H., Graham L., Adukwu E.C. In vitro antifungal activity of Cinnamomum zeylanicum bark and leaf essential oils against Candida albicans and Candida auris. Appl. Microbiol. Biotechnol. 2020;104:8911–8924. doi:10.1007/s00253-020-10829-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

113. Shah G., Shri R., Panchal V., Sharma N., Singh B., Mann A.S. Scientific basis for the therapeutic use of Cymbopogon citratus, stapf (Lemon grass) J. Adv. Pharm. Technol. Res. 2011;2:3–8. doi:10.4103/2231-4040.79796. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

114. Prajapati M., Shah M., Ranginwala A., Agrawal P., Acharya D., Thakkar S. Antifungal effects of tulsi, garlic, cinnamon and lemongrass in powder and oil form on Candida albicans: An in vitro study. J. Oral. Maxillofac. Pathol. 2021;25:306–312. doi:10.4103/0973-029X.325233. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

115. Amornvit P., Choonharuangdej S., Srithavaj T. Lemongrass-Incorporated Tissue Conditioner against Candida albicans Culture. J. Clin. Diagn. Res. 2014;8:ZC50-2. doi:10.7860/JCDR/2014/8378.4607. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

116. Da Silva C.d.B., Guterres S.S., Weisheimer V., Schapoval E.E. Antifungal activity of the lemongrass oil and citral against Candida spp. Braz. J. Infect. Dis. 2008;12:63–66. doi:10.1590/S1413-86702008000100014. [PubMed] [CrossRef] [Google Scholar]

117. Almeida Lde F., Paula J.F., Almeida R.V., Williams D.W., Hebling J., Cavalcanti Y.W. Efficacy of citronella and cinnamon essential oils on Candida albicans biofilms. Acta Odontol. Scand. 2016;74:393–398. doi:10.3109/00016357.2016.1166261. [PubMed] [CrossRef] [Google Scholar]

118. Tyagi A.K., Malik A. Liquid and vapour-phase antifungal activities of selected essential oils against Candida albicans: Microscopic observations and chemical characterization of Cymbopogon citratus. BMC Complement. Altern. Med. 2010;10:65. doi:10.1186/1472-6882-10-65. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

119. Carpo B.G., Verallo-Rowell V.M., Kabara J. Novel antibacterial activity of monolaurin compared with conventional antibiotics against organisms from skin infections: An in vitro study. J. Drugs Dermatol. 2007;6:991–998. [PubMed] [Google Scholar]

120. Seleem D., Freitas-Blanco V.S., Noguti J., Zancope B.R., Pardi V., Murata R.M. In Vivo Antifungal Activity of Monolaurin against Candida albicans Biofilms. Biol. Pharm. Bull. 2018;41:1299–1302. doi:10.1248/bpb.b18-00256. [PubMed] [CrossRef] [Google Scholar]

121. Seleem D., Chen E., Benso B., Pardi V., Murata R.M. In vitro evaluation of antifungal activity of monolaurin against Candida albicans biofilms. PeerJ. 2016;4:e2148. doi:10.7717/peerj.2148. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

122. Gunsalus K.T., Tornberg-Belanger S.N., Matthan N.R., Lichtenstein A.H., Kumamoto C.A. Manipulation of Host Diet to Reduce Gastrointestinal Colonization by the Opportunistic Pathogen Candida albicans. mSphere. 2016;1:e00020-15. doi:10.1128/mSphere.00020-15. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

123. Rahmani A.H., Shabrmi F.M., Aly S.M. Active ingredients of ginger as potential candidates in the prevention and treatment of diseases via modulation of biological activities. Int. J. Physiol. Pathophysiol. Pharmacol. 2014;6:125–136. [PMC free article] [PubMed] [Google Scholar]

124. Kim H.S., Park H.D. Ginger extract inhibits biofilm formation by Pseudomonas aeruginosa PA14. PLoS ONE. 2013;8:e76106. doi:10.1371/journal.pone.0076106. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

125. Mao Q.Q., Xu X.Y., Cao S.Y., Gan R.Y., Corke H., Beta T., Li H.B. Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe) Foods. 2019;8:185. doi:10.3390/foods8060185. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

126. Aghazadeh M., Bialvaei A.Z., Aghazadeh M., Kabiri F., Saliani N., Yousefi M., Eslami H., Kafil H.S. Survey of the Antibiofilm and Antimicrobial Effects of Zingiber officinale (in Vitro Study) Jundishapur J. Microbiol. 2016;9:e30167. doi:10.5812/jjm.30167. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

127. Khan A., Azam M., Allemailem K.S., Alrumaihi F., Almatroudi A., Alhumaydhi F.A., Ahmad H.I., Khan M.U., Khan M.A. Coadministration of Ginger Extract and Fluconazole Shows a Synergistic Effect in the Treatment of Drug-Resistant Vulvovagin*l Candidiasis. Infect. Drug Resist. 2021;14:1585–1599. doi:10.2147/IDR.S305503. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

128. Fathy S.A., Mohamed M.R., Emam M.A., Mohamed S.S., Ghareeb D.A., Elgohary S.A., Abd-El Megeed D.F. Therapeutic efficacy of seaweed extract (Ulva Fasciata Delile) against invasive candidiasis in mice. Trop. Biomed. 2019;36:972–986. [PubMed] [Google Scholar]

129. Mubarak Z., Humaira A., Gani B.A., Muchlisin Z.A. Preliminary study on the inhibitory effect of seaweed Gracilaria verrucosa extract on biofilm formation of Candida albicans cultured from the saliva of a smoker. F1000Resarch. 2018;7:684. doi:10.12688/f1000research.14879.2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

130. Oka S., Okabe M., Tsubura S., Mikami M., Imai A. Properties of fucoidans beneficial to oral healthcare. Odontology. 2020;108:34–42. doi:10.1007/s10266-019-00437-3. [PubMed] [CrossRef] [Google Scholar]

131. Lopes G., Pinto E., Andrade P.B., Valentao P. Antifungal activity of phlorotannins against dermatophytes and yeasts: Approaches to the mechanism of action and influence on Candida albicans virulence factor. PLoS ONE. 2013;8:e72203. doi:10.1371/journal.pone.0072203. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

132. Jafri H., Ahmad I. Thymus vulgaris essential oil and thymol inhibit biofilms and interact synergistically with antifungal drugs against drug resistant strains of Candida albicans and Candida tropicalis. J. Mycol. Med. 2020;30:100911. doi:10.1016/j.mycmed.2019.100911. [PubMed] [CrossRef] [Google Scholar]

133. Ramos C.I., de Lima A.F.A., Grilli D.G., Cuppari L. The short-term effects of olive oil and flaxseed oil for the treatment of constipation in hemodialysis patients. J. Ren. Nutr. 2015;25:50–56. doi:10.1053/j.jrn.2014.07.009. [PubMed] [CrossRef] [Google Scholar]

134. Cariello M., Contursi A., Gadaleta R.M., Piccinin E., De Santis S., Piglionica M., Spaziante A.F., Sabba C., Villani G., Moschetta A. Extra-Virgin Olive Oil from Apulian Cultivars and Intestinal Inflammation. Nutrients. 2020;12:1084. doi:10.3390/nu12041084. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

135. Charlet R., Le Danvic C., Sendid B., Nagnan-Le Meillour P., Jawhara S. Oleic Acid and Palmitic Acid from Bacteroides thetaiotaomicron and Lactobacillus johnsonii Exhibit Anti-Inflammatory and Antifungal Properties. Microorganisms. 2022;10:1083. doi:10.3390/microorganisms10091803. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

136. Compant S., Samad A., Faist H., Sessitsch A. A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. J. Adv. Res. 2019;19:29–37. doi:10.1016/j.jare.2019.03.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

137. Garnås E. Fermented Vegetables as a Potential Treatment for Irritable Bowel Syndrome. Curr. Dev. Nutr. 2023;7:100039. doi:10.1016/j.cdnut.2023.100039. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

138. Shahbazi R., Sharifzad F., Bagheri R., Alsadi N., Yasavoli-Sharahi H., Matar C. Anti-Inflammatory and Immunomodulatory Properties of Fermented Plant Foods. Nutrients. 2021;13:1516. doi:10.3390/nu13051516. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

139. Plengvidhya V., Breidt F., Jr., Lu Z., Fleming H.P. DNA fingerprinting of lactic acid bacteria in sauerkraut fermentations. Appl. Environ. Microbiol. 2007;73:7697–7702. doi:10.1128/AEM.01342-07. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

140. Lee H., Yoon H., Ji Y., Kim H., Park H., Lee J., Shin H., Holzapfel W. Functional properties of Lactobacillus strains isolated from kimchi. Int. J. Food Microbiol. 2011;145:155–161. doi:10.1016/j.ijfoodmicro.2010.12.003. [PubMed] [CrossRef] [Google Scholar]

141. Beck B.R., Park G.S., Lee Y.H., Im S., Jeong D.Y., Kang J. Whole Genome Analysis of Lactobacillus plantarum Strains Isolated From Kimchi and Determination of Probiotic Properties to Treat Mucosal Infections by Candida albicans and Gardnerella vagin*lis. Front. Microbiol. 2019;10:433. doi:10.3389/fmicb.2019.00433. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

142. Ghoneum M., Abdulmalek S. KDP, a Lactobacilli Product from Kimchi, Enhances Mucosal Immunity by Increasing Secretory IgA in Mice and Exhibits Antimicrobial Activity. Nutrients. 2021;13:3936. doi:10.3390/nu13113936. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

143. Yagnik D., Serafin V., Shah A.J. Antimicrobial activity of apple cider vinegar against Escherichia coli, Staphylococcus aureus and Candida albicans; downregulating cytokine and microbial protein expression. Sci. Rep. 2018;8:1732. doi:10.1038/s41598-017-18618-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

144. Fisberg M., Machado R. History of yogurt and current patterns of consumption. Nutr. Rev. 2015;73((Suppl. S1)):4–7. doi:10.1093/nutrit/nuv020. [PubMed] [CrossRef] [Google Scholar]

145. Shalev E., Battino S., Weiner E., Colodner R., Keness Y. Ingestion of yogurt containing Lactobacillus acidophilus compared with pasteurized yogurt as prophylaxis for recurrent candidal vaginitis and bacterial vaginosis. Arch. Fam. Med. 1996;5:593–596. doi:10.1001/archfami.5.10.593. [PubMed] [CrossRef] [Google Scholar]

146. Aitzhanova A., Oleinikova Y., Mounier J., Hymery N., Salas M.L., Amangeldi A., Saubenova M., Alimzhanova M., Ashimuly K., Sadanov A. Dairy associations for the targeted control of opportunistic Candida. World J. Microbiol. Biotechnol. 2021;37:143. doi:10.1007/s11274-021-03096-1. [PubMed] [CrossRef] [Google Scholar]

147. Hu H., Merenstein D.J., Wang C., Hamilton P.R., Blackmon M.L., Chen H., Calderone R.A., Li D. Impact of eating probiotic yogurt on colonization by Candida species of the oral and vagin*l mucosa in HIV-infected and HIV-uninfected women. Mycopathologia. 2013;176:175–181. doi:10.1007/s11046-013-9678-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Healthy Diet and Lifestyle Improve the Gut Microbiota and Help Combat Fungal Infection (2024)
Top Articles
Latest Posts
Article information

Author: Prof. An Powlowski

Last Updated:

Views: 6337

Rating: 4.3 / 5 (64 voted)

Reviews: 87% of readers found this page helpful

Author information

Name: Prof. An Powlowski

Birthday: 1992-09-29

Address: Apt. 994 8891 Orval Hill, Brittnyburgh, AZ 41023-0398

Phone: +26417467956738

Job: District Marketing Strategist

Hobby: Embroidery, Bodybuilding, Motor sports, Amateur radio, Wood carving, Whittling, Air sports

Introduction: My name is Prof. An Powlowski, I am a charming, helpful, attractive, good, graceful, thoughtful, vast person who loves writing and wants to share my knowledge and understanding with you.