What could be the reasons for not losing weight even after following a weight loss program? (2024)

1. World Health Organization. Obesity; 2021. Available at: https://www.who.int/news-room/facts-in-pictures/detail/6-facts-on-obesity (Accessed: 28 October 2021).

2. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet. 2014;384(9945):766–781. doi:10.1016/s0140-6736(14)60460-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Ataey A, Jafarvand E, Adham D, Moradi-Asl E. The relationship between obesity, overweight, and the Human Development Index in World Health Organization Eastern Mediterranean Region Countries. J Prevent Med Public Health. 2020;53(2):98–105. doi:10.3961/jpmph.19.100. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

4. Albuquerque D, Nóbrega C, Manco L, Padez C. The contribution of genetics and environment to obesity. Br Med Bull. 2017;123(1):159–173. doi:10.1093/bmb/ldx022. [PubMed] [CrossRef] [Google Scholar]

5. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, Lango Allen H, Lindgren CM, Luan J, Mägi R, Randall JC, Vedantam S, Winkler TW, Qi L, Workalemahu T, Heid IM, Steinthorsdottir V, Stringham HM, Weedon MN, Wheeler E, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet. 2010;42(11):937–948. doi:10.1038/ng.686. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Lopez-Minguez J, Gómez-Abellán P, Garaulet M. Circadian rhythms, food timing and obesity. Proc Nutr Soc. 2016;75(4):501–511. doi:10.1017/S0029665116000628. [PubMed] [CrossRef] [Google Scholar]

7. Beccuti G, Pannain S. Sleep and obesity. Curr Opin Clin Nutr Metab Care. 2011;14(4):402–412. doi:10.1097/MCO.0b013e3283479109. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Levine JA. Poverty and obesity in the US. Diabetes. 2011;60(11):2667–2668. doi:10.2337/db11-1118. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Kilpeläinen TO, Qi L, Brage S, Sharp SJ, Sonestedt E, Demerath E, Ahmad T, Mora S, Kaakinen M, Sandholt CH, Holzapfel C, Autenrieth CS, Hyppönen E, Cauchi S, He M, Kutalik Z, Kumari M, Stančáková A, Meidtner K, Balkau B, et al. Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children. PLoS Med. 2011;8(11):e1001116. doi:10.1371/journal.pmed.1001116. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019;15:288–298. doi:10.1038/s41574-019-0176-8. [PubMed] [CrossRef] [Google Scholar]

11. Drewnowski A. Obesity diets and social inequalities. Nutr Rev. 2009;67(suppl_1):S36–S39. doi:10.1111/j.1753-4887.2009.00157.x. [PubMed] [CrossRef] [Google Scholar]

12. Ryan DH, Yockey SR. Weight loss and improvement in comorbidity: differences at 5%, 10%, 15%, and Over. Curr Obes Rep NIH Public Access. 2017;6(2):187–194. doi:10.1007/s13679-017-0262-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Wing RR, Lang W, Wadden TA, Safford M, Knowler WC, Bertoni AG, Hill JO, Brancati FL, Peters A, Wagenknecht L, Look AHEAD Research Group Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes care. 2011;34(7):1481–1486. doi:10.2337/dc10-2415. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Brown JD, Buscemi J, Milsom V, Malcolm R, O'Neil PM. Effects on cardiovascular risk factors of weight losses limited to 5–10. Transl Behav Med. 2016;6(3):339–346. doi:10.1007/s13142-015-0353-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. World Health Organization. Obesity and overweight; 2021. Available at: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (Accessed: 28 October 2021)

16. Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019 doi:10.1038/s41574-019-0176-8. [PubMed] [CrossRef] [Google Scholar]

17. Wing RR, Phelan S. Long-term weight loss maintenance. Am J Clin Nutr. 2005;82(1 Suppl):222S–225S. doi:10.1093/ajcn/82.1.222S. [PubMed] [CrossRef] [Google Scholar]

18. Hebebrand J, Holm JC, Woodward E, Baker JL, Blaak E, Durrer Schutz D, Farpour-Lambert NJ, Frühbeck G, Halford JGC, Lissner L, Micic D, Mullerova D, Roman G, Schindler K, Toplak H, Visscher TLS, Yumuk V. A Proposal of the European Association for the Study of Obesity to Improve the ICD-11 Diagnostic Criteria for Obesity Based on the Three Dimensions Etiology, Degree of Adiposity and Health Risk. Obes Facts. 2017;10(4):284–307. doi:10.1159/000479208. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Maclean PS, Bergouignan A, Cornier MA, Jackman MR. Biology's response to dieting: the impetus for weight regain. Am J Physiol Regul Integr Comp Physiol. 2011;301(3):R581–R600. doi:10.1152/ajpregu.00755.2010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. McHill AW, Melanson EL, Higgins J, Connick E, Moehlman TM, Stothard ER, Wright KP., Jr Impact of circadian misalignment on energy metabolism during simulated nightshift work. Proc Natl Acad Sci USA. 2014;111(48):17302–17307. doi:10.1073/pnas.1412021111. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Lenoir L, Maillot M, Guilbot A, Ritz P. Primary care weight loss maintenance with behavioral nutrition: an observational study. Obesity. 2015;23(9):1771–1777. doi:10.1002/oby.21157. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Arksey H, O’Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005;8(1):19–32. doi:10.1080/1364557032000119616. [CrossRef] [Google Scholar]

23. Levac D, Colquhoun H, O'Brien KK. Scoping studies: advancing the methodology. Implement Sci IS. 2010;5:69. doi:10.1186/1748-5908-5-69. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Ziegler A, Schafer H, Hebebrand J. ‘Risch’s lambda values for human obesity estimated from segregation analysis [1]’ Int J Obs. 1997;21(10):952–953. doi:10.1038/SJ.IJO.0800496. [PubMed] [CrossRef] [Google Scholar]

25. Nikpay M, Lau P, Soubeyrand S, Whytock KL, Beehler K, Pileggi C, Ghosh S, Harper ME, Dent R, McPherson R. SGCG rs679482 associates with weight loss success in response to an intensively supervised outpatient program. Diabetes. 2020;69(9):2017–2026. doi:10.2337/db20-0219. [PubMed] [CrossRef] [Google Scholar]

26. Dent R, McPherson R, Harper ME. Factors affecting weight loss variability in obesity. Metabolism. 2020;113:154388. doi:10.1016/j.metabol.2020.154388. [PubMed] [CrossRef] [Google Scholar]

27. Reinhardt M, Thearle MS, Ibrahim M, Hohenadel MG, Bogardus C, Krakoff J, Votruba SB. A human thrifty phenotype associated with less weight loss during caloric restriction. Diabetes. 2015;64(8):2859–2867. doi:10.2337/db14-1881. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Krakoff J, Ma L, Kobes S, Knowler WC, Hanson RL, Bogardus C, Baier LJ. Lower metabolic rate in individuals heterozygous for either a frameshift or a functional missense MC4R variant. Diabetes. 2008;57(12):3267–3272. doi:10.2337/db08-0577. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Westerterp KR. ‘Control of energy expenditure in humans’ Eur J Clin Nutr. 2017;71(3):340–344. doi:10.1038/ejcn.2016.237. [PubMed] [CrossRef] [Google Scholar]

30. Heymsfield SB, Hwaung P, Ferreyro-Bravo F, Heo M, Thomas DM, Schuna JM., Jr Scaling of adult human bone and skeletal muscle mass to height in the US population. Am J Hum Biol. 2019;31(4):e23252. doi:10.1002/ajhb.23252. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. Ten Hoor GA, Plasqui G, Schols AMWJ, Kok G. A benefit of being heavier is being strong: a cross-sectional study in young adults. Sports Med Open. 2018;4(1):12. doi:10.1186/s40798-018-0125-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Tryon WW, Goldberg JL, Morrison DF. Activity decreases as percentage overweight increases. Int J Obes Relat Metab Disord. 1992;16:591–595. [PubMed] [Google Scholar]

33. Bautista-Castano I, Molina-Cabrillana J, Montoya-Alonso JA, Serra-Majem L. Variables predictive of adherence to diet and physical activity recommendations in the treatment of obesity and overweight, in a group of Spanish subjects. Int J Obes Relat Metab Disord. 2004;28:697–705. doi:10.1038/sj.ijo.0802602. [PubMed] [CrossRef] [Google Scholar]

34. Dishman RK, Gettman LR. Psychobiologic influences on exercise adherence. J Sport Psychol. 1980;2:295–310. doi:10.1123/jsp.2.4.295. [CrossRef] [Google Scholar]

35. Epstein LH, Koeske R, Wing RR. Adherence to exercise in obese children. J Cardiac Rehabil. 1984;4:185–195. [Google Scholar]

36. King AC, Kiernan M, Oman RF, Kraemer HC, Hull M, Ahn D. Can we identify who will adhere to long-term physical activity? Signal detection methodology as a potential aid to clinical decision-making. Health Psychol. 1997;16:380–389. doi:10.1037/0278-6133.16.4.380. [PubMed] [CrossRef] [Google Scholar]

37. Kriska AM, Bayles C, Cauley JA, LaPorte RE, Black Sandler R, Pambianco G. A randomized exercise trial in older women: increased activity over two years and the factors associated with compliance. Med Sci Sports Exerc. 1986;18:557–562. doi:10.1249/00005768-198610000-00011. [PubMed] [CrossRef] [Google Scholar]

38. Dulloo AG, Schutz Y. Adaptive thermogenesis in resistance to obesity therapies: issues in quantifying thrifty energy expenditure phenotypes in humans. Curr Obes Rep. 2015;4(2):230–240. doi:10.1007/s13679-015-0156-9. [PubMed] [CrossRef] [Google Scholar]

39. Müller MJ, Enderle J, Pourhassan M, Braun W, Eggeling B, Lagerpusch M, Glüer CC, Kehayias JJ, Kiosz D, Bosy-Westphal A. Metabolic adaptation to caloric restriction and subsequent refeeding: the Minnesota Starvation Experiment revisited. Am J Clin Nutr. 2015;102(4):807–819. doi:10.3945/ajcn.115.109173. [PubMed] [CrossRef] [Google Scholar]

40. Martins C, Gower BA, Hill JO, Hunter GR. Metabolic adaptation is not a major barrier to weight-loss maintenance. Am J Clin Nutr. 2020;112(3):558–565. doi:10.1093/ajcn/nqaa086. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Hall KD, Sacks G, Chandramohan D, Chow CC, Wang YC, Gortmaker SL, Swinburn BA. Quantification of the effect of energy imbalance on body weight. Lancet. 2011;378(9793):826–837. doi:10.1016/S0140-6736(11)60812-X. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Björntorp P, Carlgren G, Isaksson B, Krotkiewski M, Larsson B, Sjöström L. Effect of an energy-reduced dietary regimen in relation to adipose tissue cellularity in obese women. Am J Clin Nutr. 1975;28(5):445–452. doi:10.1093/ajcn/28.5.445. [PubMed] [CrossRef] [Google Scholar]

43. Löfgren P, Hoffstedt J, Näslund E, Wirén M, Arner P. Prospective and controlled studies of the actions of insulin and catecholamine in fat cells of obese women following weight reduction. Diabetologia. 2005;48(11):2334–2342. doi:10.1007/s00125-005-1961-6. [PubMed] [CrossRef] [Google Scholar]

44. Bi S, Robinson BM, Moran TH. Acute food deprivation and chronic food restriction differentially affect hypothalamic NPY mRNA expression. Am J Physiol Regul Integr Comp Physiol. 2003;285(5):R1030–R1036. doi:10.1152/ajpregu.00734.2002. [PubMed] [CrossRef] [Google Scholar]

45. Chandler PC, Wauford PK, Oswald KD, Maldonado CR, Hagan MM. Change in CCK-8 response after diet-induced obesity and MC3/4-receptor blockade. Peptides Peptides. 2004;25(2):299–306. doi:10.1016/j.peptides.2003.12.015. [PubMed] [CrossRef] [Google Scholar]

46. Morton GJ, Blevins JE, Williams DL, Niswender KD, Gelling RW, Rhodes CJ, Baskin DG, Schwartz MW. Leptin action in the forebrain regulates the hindbrain response to satiety signals. J Clin Investig. 2005;115(3):703–710. doi:10.1172/JCI22081. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Rosenbaum M, Sy M, Pavlovich K, Leibel RL, Hirsch J. Leptin reverses weight loss-induced changes in regional neural activity responses to visual food stimuli. J Clin Investig. 2008;118(7):2583–2591. doi:10.1172/JCI35055. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Chaker L, Bianco AC, Jonklaas J, Peeters RP. Hypothyroidism. Lancet. 2017;390(10101):1550–1562. doi:10.1016/S0140-6736(17)30703-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Garber JR, Cobin RH, Gharib H, Hennessey JV, Klein I, Mechanick JI, Pessah-Pollack R, Singer PA, Woeber KA, American Association of Clinical Endocrinologists and American Thyroid Association Taskforce on Hypothyroidism in Adults Clinical practice guidelines for hypothyroidism in adults: Cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association. Thyroid Thyroid. 2012;22(12):1200–1235. doi:10.1089/thy.2012.0205. [PubMed] [CrossRef] [Google Scholar]

50. Al-Adsani H, Hoffer LJ, Silva JE. Resting energy expenditure is sensitive to small dose changes in patients on chronic thyroid hormone replacement. OxfordJ Clin Endocrinol Metabol. 1997;82(4):1118–1125. doi:10.1210/JCEM.82.4.3873. [PubMed] [CrossRef] [Google Scholar]

51. Ríos-Prego M, Anibarro L, Sánchez-Sobrino P. Relationship between thyroid dysfunction and body weight: a not so evident paradigm. Int J Gener Med. 2019;12:299. doi:10.2147/IJGM.S206983. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Fox CS, Pencina MJ, D'Agostino RB, Murabito JM, Seely EW, Pearce EN, Vasan RS. Relations of thyroid function to body weight: cross-sectional and longitudinal observations in a community-based sample. Arch Intern Med. 2008;168(6):587–592. doi:10.1001/archinte.168.6.587. [PubMed] [CrossRef] [Google Scholar]

53. Manji N, Boelaert K, Sheppard MC, Holder RL, Gough SC, Franklyn JA. Lack of association between serum TSH or free T4 and body mass index in euthyroid subjects. Clin Endocrinol. 2006;64(2):125–128. doi:10.1111/j.1365-2265.2006.02433.x. [PubMed] [CrossRef] [Google Scholar]

54. Song RH, Wang B, Yao QM, Li Q, Jia X, Zhang JA. The impact of obesity on thyroid autoimmunity and dysfunction: a systematic review and meta-analysis. Front Immunol. 2019;10:2349. doi:10.3389/fimmu.2019.02349. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Barber TM, Hanson P, Weickert MO, Franks S. Obesity and polycystic ovary syndrome: implications for pathogenesis and novel management strategies. Clin Med Insights Reprod Health. 2019;13:1179558119874042. doi:10.1177/1179558119874042. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Lim S, Smith CA, Costello MF, et al. Barriers and facilitators to weight management in overweight and obese women living in Australia with PCOS: a qualitative study. BMC Endocr Disord. 2019;19:106. doi:10.1186/s12902-019-0434-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Kataoka J, Tassone EC, Misso M, Joham AE, Stener-Victorin E, Teede H, Moran LJ. Weight management interventions in women with and without PCOS: a systematic review. Nutrients. 2017;9(9):996. doi:10.3390/nu9090996. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Nikokavoura EA, Johnston KL, Broom J, Wrieden WL, Rolland C. Weight loss for women with and without polycystic ovary syndrome following a very low-calorie diet in a community-based setting with trained facilitators for 12 weeks. Diabetes Metabol Syndr Obes Targets Ther. 2015;8:495–503. doi:10.2147/DMSO.S85134. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Mayeda ER, Torgal AH, Westhoff CL. Weight and body composition changes during oral contraceptive use in obese and normal weight women. J Women’s Health. 2014;23(1):38. doi:10.1089/JWH.2012.4241. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Caldwell AE, Zaman A, Ostendorf DM, Pan Z, Swanson BB, Phelan S, Wyatt HR, Bessesen DH, Melanson EL, Catenacci VA. Impact of combined hormonal contraceptive use on weight loss: a secondary analysis of a behavioral weight-loss trial. Obesity. 2020;28(6):1040–1049. doi:10.1002/oby.22787. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Russell-Jones D, Khan R. Insulin-associated weight gain in diabetes–causes, effects and coping strategies. Diabetes Obes Metab. 2007;9(6):799–812. doi:10.1111/j.1463-1326.2006.00686.x. [PubMed] [CrossRef] [Google Scholar]

62. Lamont LS, Brown T, Riebe D, Caldwell M. The major components of human energy balance during chronic beta-adrenergic blockade. J Cardpulm Rehabil. 2000;20(4):247–250. doi:10.1097/00008483-200007000-00006. [PubMed] [CrossRef] [Google Scholar]

63. Lee P, Kengne AP, Greenfield JR, Day RO, Chalmers J, Ho KK. Metabolic sequelae of β-blocker therapy: weighing in on the obesity epidemic? Int J Obes (2005) 2011;35(11):1395–1403. doi:10.1038/ijo.2010.284. [PubMed] [CrossRef] [Google Scholar]

64. Gammone MA, Efthymakis K, D'Orazio N. Effect of third-generation beta blockers on weight loss in a population of overweight-obese subjects in a controlled dietary regimen. J Nutr Metabol. 2021;2021:5767306. doi:10.1155/2021/5767306. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Shi Z, Atlantis E, Taylor AW, Gill TK, Price K, Appleton S, Wong ML, Licinio J. SSRI antidepressant use potentiates weight gain in the context of unhealthy lifestyles: results from a 4-year Australian follow-up study. BMJ Open. 2017;7(8):e016224. doi:10.1136/bmjopen-2017-016224. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

66. Gafoor R, Booth HP, Gulliford MC. Antidepressant utilisation and incidence of weight gain during 10 years’ follow-up: population-based cohort study. BMJ. 2018;361:k1951. doi:10.1136/bmj.k1951. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

67. Olguner Eker Ö, Özsoy S, Eker B, Doğan H. Metabolic effects of antidepressant treatment. Noro Psikiyatri Arsivi. 2017;54(1):49–56. doi:10.5152/npa.2016.12373. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. Jirapinyo P, Jin DX, Qazi T, Mishra N, Thompson CC. A meta-analysis of GLP-1 After Roux-En-Y gastric bypass: impact of surgical technique and measurement strategy. Obes Surg. 2018;28(3):615–626. doi:10.1007/s11695-017-2913-1. [PubMed] [CrossRef] [Google Scholar]

69. Bohdjalian A, Langer FB, Shakeri-Leidenmühler S, Gfrerer L, Ludvik B, Zacherl J, Prager G. Sleeve gastrectomy as sole and definitive bariatric procedure: 5-year results for weight loss and ghrelin. Obes Surg. 2010;20(5):535–540. doi:10.1007/s11695-009-0066-6. [PubMed] [CrossRef] [Google Scholar]

70. Santo MA, Riccioppo D, Pajecki D, Kawamoto F, de Cleva R, Antonangelo L, Marçal L, Cecconello I. Weight regain after gastric bypass: influence of gut hormones. Obes Surg. 2016;26(5):919–925. doi:10.1007/s11695-015-1908-z. [PubMed] [CrossRef] [Google Scholar]

71. Zalesin KC, Franklin BA, Miller WM, Nori Janosz KE, Veri S, Odom J, McCullough PA. Preventing weight regain after bariatric surgery: an overview of lifestyle and psychosocial modulators. Am J Lifestyle Med. 2010;4(2):113–120. doi:10.1177/1559827609351227. [CrossRef] [Google Scholar]

72. Cadena-Obando D, Ramírez-Rentería C, Ferreira-Hermosillo A, Albarrán-Sanchez A, Sosa-Eroza E, Molina-Ayala M, Espinosa-Cárdenas E. Are there really any predictive factors for a successful weight loss after bariatric surgery? BMC Endocr Disord. 2020 doi:10.1186/s12902-020-0499-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Magro DO, Geloneze B, Delfini R, Pareja BC, Callejas F, Pareja JC. Long-term weight regain after gastric bypass: a 5-year prospective study. Obes Surg. 2008;18:648–651. doi:10.1007/s11695-007-9265-1. [PubMed] [CrossRef] [Google Scholar]

74. Gualano B, Kirwan JP, Roschel H. Exercise is key to sustaining metabolic gains after bariatric surgery. Exerc Sport Sci Rev. 2021;49(3):197–204. doi:10.1249/JES.0000000000000253. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Robinson AH, Adler S, Stevens HB, Darcy AM, Morton JM, Safer DL. What variables are associated with successful weight loss outcomes for bariatric surgery after 1 year? Surg Obes Relat Dis. 2014;10:697–704. doi:10.1016/j.soard.2014.01.030. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

76. Arunabh S, Pollack S, Yeh J, Aloia JF. Body fat content and 25-hydroxyvitamin D levels in healthy women. J Clin Endocrinol Metab. 2003;88(1):157–161. doi:10.1210/jc.2002-020978. [PubMed] [CrossRef] [Google Scholar]

77. Parikh SJ, Edelman M, Uwaifo GI, Freedman RJ, Semega-Janneh M, Reynolds J, Yanovski JA. The relationship between obesity and serum 1,25-dihydroxy vitamin D concentrations in healthy adults. J Clin Endocrinol Metab. 2004;89(3):1196–1199. doi:10.1210/jc.2003-031398. [PubMed] [CrossRef] [Google Scholar]

78. Mason C, Xiao L, Imayama I, Duggan C, Wang CY, Korde L, McTiernan A. Vitamin D3 supplementation during weight loss: a double-blind randomized controlled trial. Am J Clin Nutr. 2014;99(5):1015–1025. doi:10.3945/ajcn.113.073734. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Zittermann A, Frisch S, Berthold HK, Götting C, Kuhn J, Kleesiek K, Stehle P, Koertke H, Koerfer R. Vitamin D supplementation enhances the beneficial effects of weight loss on cardiovascular disease risk markers. Am J Clin Nutr. 2009;89(5):1321–1327. doi:10.3945/ajcn.2008.27004. [PubMed] [CrossRef] [Google Scholar]

80. Gibson AA, Sainsbury A. Strategies to improve adherence to dietary weight loss interventions in research and real-world settings. Behav Sci. 2017 doi:10.3390/BS7030044. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Dansinger ML, Gleason JA, Griffith JL, Selker HP, Schaefer EJ. Comparison of the Atkins, Ornish, weight watchers, and zone diets for weight loss and heart disease risk reduction: a randomized trial. JAMA. 2005;293(1):43–53. doi:10.1001/jama.293.1.43. [PubMed] [CrossRef] [Google Scholar]

82. Alhassan S, Kim S, Bersamin A, King AC, Gardner CD. Dietary adherence and weight loss success among overweight women: results from the A to Z weight loss study. Int J Obes. 2008;32(6):985–991. doi:10.1038/ijo.2008.8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Del Corral P, Bryan DR, Garvey WT, Gower BA, Hunter GR. Dietary adherence during weight loss predicts weight regain. Obesity. 2011;19(6):1177–1181. doi:10.1038/oby.2010.298. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. World Health Organization. Adherence to long-term therapies: evidence for action; 2003. World Health Organization. https://apps.who.int/iris/handle/10665/42682

85. Rogers M, Lemstra M, Bird Y, Nwankwo C, Moraros J. Weight-loss intervention adherence and factors promoting adherence: a meta-analysis. Patient Prefer Adherence. 2016;10:1547–1559. doi:10.2147/PPA.S103649. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Grave RD, Suppini A, Calugi S, Marchesini G. Factors associated with attrition in weight loss programs. Int J Behav Consult Ther. 2006;2(3):341–353. doi:10.1037/h0100788. [CrossRef] [Google Scholar]

87. Dombrowski SU, Knittle K, Avenell A, Araújo-Soares V, Sniehotta FF. Long term maintenance of weight loss with non-surgical interventions in obese adults: systematic review and meta-analyses of randomized controlled trials. BMJ. 2014;348:g2646. doi:10.1136/bmj.g2646. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

88. Franz MJ, VanWormer JJ, Crain AL, Boucher JL, Histon T, Caplan W, Bowman JD, Pronk NP. Weight-loss outcomes: a systematic review and meta-analysis of weight-loss clinical trials with a minimum 1-year follow-up. J Am Diet Assoc. 2007;107(10):1755–1767. doi:10.1016/j.jada.2007.07.017. [PubMed] [CrossRef] [Google Scholar]

89. Del Corral P, Chandler-Laney PC, Casazza K, Gower BA, Hunter GR. Effect of dietary adherence with or without exercise on weight loss: a mechanistic approach to a global problem. J Clin Endocrinol Metab. 2009;94(5):1602–1607. doi:10.1210/jc.2008-1057. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

90. Klein S, Burke LE, Bray GA, Blair S, Allison DB, Pi-Sunyer X, Hong Y, Eckel RH, Council AHA, on Nutrition, Physical Activity, and Metabolism, Clinical implications of obesity with specific focus on cardiovascular disease: a statement for professionals from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism: endorsed by the American College of Cardiology Foundation. Circulation. 2004;110(18):2952–2967. doi:10.1161/01.CIR.0000145546.97738.1E. [PubMed] [CrossRef] [Google Scholar]

91. Burke V, Mori TA, Giangiulio N, Gillam HF, Beilin LJ, Houghton S, Cutt HE, Mansour J, Wilson A. An innovative program for changing health behaviors. Asia Pac J Clin Nutr. 2002;11(Suppl 3):S586–S597. doi:10.1046/j.1440-6047.11.supp3.8.x. [PubMed] [CrossRef] [Google Scholar]

92. Ayele AA, Emiru YK, Tiruneh SA, Ayele BA, Gebremariam AD, Tegegn HG. Level of adherence to dietary recommendations and barriers among type 2 diabetic patients: a cross-sectional study in an Ethiopian hospital. Clin Diabetes Endocrinol. 2018;4:21. doi:10.1186/s40842-018-0070-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. Desroches S, Lapointe A, Ratté S, Gravel K, Légaré F, Turcotte S. Interventions to enhance adherence to dietary advice for preventing and managing chronic diseases in adults. Cochrane Database Syst Rev. 2013 doi:10.1002/14651858.CD008722.pub2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

94. Koliaki C, Spinos T, Spinou Μ, Brinia ΜE, Mitsopoulou D, Katsilambros N. Defining the optimal dietary approach for safe, effective and sustainable weight loss in overweight and obese adults. Healthcare. 2018;6(3):73. doi:10.3390/healthcare6030073. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

95. Parretti HM, Jebb SA, Johns DJ, Lewis AL, Christian-Brown AM, Aveyard P. Clinical effectiveness of very-low-energy diets in the management of weight loss: a systematic review and meta-analysis of randomized controlled trials. Obes Rev. 2016;17(3):225–234. doi:10.1111/obr.12366. [PubMed] [CrossRef] [Google Scholar]

96. Greenberg I, Stampfer MJ, Schwarzfuchs D, Shai I, DIRECT Group Adherence and success in long-term weight loss diets: the dietary intervention randomized controlled trial (DIRECT) J Am Coll Nutr. 2009;28(2):159–168. doi:10.1080/07315724.2009.10719767. [PubMed] [CrossRef] [Google Scholar]

97. Kreitzman SN, Coxon AY, Szaz KF. Glycogen storage: illusions of easy weight loss, excessive weight regain, and distortions in estimates of body composition. Am J Clin Nutr. 1992;56(1):292S–293S. doi:10.1093/ajcn/56.1.292S. [PubMed] [CrossRef] [Google Scholar]

98. Hall KD, Kahan S. Maintenance of lost weight and long-term management of obesity. Med Clin North Am. 2018;102(1):183–197. doi:10.1016/j.mcna.2017.08.012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Bellissimo N, Akhavan T. Effect of macronutrient composition on short-term food intake and weight loss. Adv Nutr. 2015;6(3):302S. doi:10.3945/AN.114.006957. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

100. Moon J, Koh G. ‘Clinical evidence and mechanisms of high-protein diet-induced weight loss. J Obes Metabol Syndr. 2020;29(3):166. doi:10.7570/JOMES20028. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

101. Wycherley TP, Thompson CH, Buckley JD, Luscombe-Marsh ND, Noakes M, Wittert GA, Brinkworth GD. Long-term effects of weight loss with a very-low carbohydrate, low saturated fat diet on flow mediated dilatation in patients with type 2 diabetes: a randomized controlled trial. Atherosclerosis. 2016;252:28–31. doi:10.1016/j.atherosclerosis.2016.07.908. [PubMed] [CrossRef] [Google Scholar]

102. Halton TL, Hu FB. The effects of high protein diets on thermogenesis, satiety and weight loss: a critical review. J Am Coll Nutr. 2004;23(5):373–385. doi:10.1080/07315724.2004.10719381. [PubMed] [CrossRef] [Google Scholar]

103. Westerterp-Plantenga MS, Nieuwenhuizen A, Tomé D, Soenen S, Westerterp KR. Dietary protein, weight loss, and weight maintenance. Annu Rev Nutr. 2009;29:21–41. doi:10.1146/annurev-nutr-080508-141056. [PubMed] [CrossRef] [Google Scholar]

104. van der Klaauw AA, Keogh JM, Henning E, Trowse VM, Dhillo WS, Ghatei MA, Farooqi IS. High protein intake stimulates postprandial GLP1 and PYY release. Obesity. 2013;21(8):1602–1607. doi:10.1002/oby.20154. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

105. Dashti HM, Mathew TC, Hussein T, Asfar SK, Behbahani A, Khoursheed MA, Al-Sayer HM, Bo-Abbas YY, Al-Zaid NS. Long-term effects of a ketogenic diet in obese patients. Exp Clin Cardiol. 2004;9(3):200–205. [PMC free article] [PubMed] [Google Scholar]

106. Hussain TA, Mathew TC, Dashti AA, Asfar S, Al-Zaid N, Dashti HM. Effect of low-calorie versus low-carbohydrate ketogenic diet in type 2 diabetes. Nutrition. 2012;28(10):1016–1021. doi:10.1016/j.nut.2012.01.016. [PubMed] [CrossRef] [Google Scholar]

107. Sato J, Kanazawa A, Makita S, Hatae C, Komiya K, Shimizu T, Ikeda F, Tamura Y, Ogihara T, Mita T, Goto H, Uchida T, Miyatsuka T, Takeno K, Shimada S, Ohmura C, Watanabe T, Kobayashi K, Miura Y, Iwaoka M, et al. A randomized controlled trial of 130 g/day low-carbohydrate diet in type 2 diabetes with poor glycemic control. Clin Nutr. 2017;36(4):992–1000. doi:10.1016/j.clnu.2016.07.003. [PubMed] [CrossRef] [Google Scholar]

108. Paoli A. Ketogenic diet for obesity: Friend or Foe? Int J Environ Res Public Health. 2014;11(2):2092. doi:10.3390/IJERPH110202092. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

109. Hall KD, Chen KY, Guo J, Lam YY, Leibel RL, Mayer LE, Reitman ML, Rosenbaum M, Smith SR, Walsh BT, Ravussin E. Energy expenditure and body composition changes after an isocaloric ketogenic diet in overweight and obese men. Am J Clin Nutr. 2016;104(2):324–333. doi:10.3945/ajcn.116.133561. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

110. Leidy HJ, Clifton PM, Astrup A, Wycherley TP, Westerterp-Plantenga MS, Luscombe-Marsh ND, Woods SC, Mattes RD. The role of protein in weight loss and maintenance. Am J Clin Nutr. 2015;101(6):1320S–1329S. doi:10.3945/ajcn.114.084038. [PubMed] [CrossRef] [Google Scholar]

111. Rollwage M, Loosen A, Hauser TU, Moran R, Dolan RJ, Fleming SM. Confidence drives a neural confirmation bias. Nat Commun. 2020;11:1. doi:10.1038/s41467-020-16278-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

112. Gudzune KA, Bennett WL, Cooper LA, Bleich SN. Perceived judgment about weight can negatively influence weight loss: a cross-sectional study of overweight and obese patients. Prev Med. 2014;62:103–107. doi:10.1016/j.ypmed.2014.02.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

113. Wee CC, Davis RB, Huskey KW, Jones DB, Hamel MB. Quality of life among obese patients seeking weight loss surgery: the importance of obesity-related social stigma and functional status. J Gen Intern Med. 2013;28(2):231–238. doi:10.1007/s11606-012-2188-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

114. Nedeltcheva AV, Kilkus JM, Imperial J, Schoeller DA, Penev PD. Insufficient sleep undermines dietary efforts to reduce adiposity. Ann Intern Med. 2010;153(7):435–441. doi:10.7326/0003-4819-153-7-201010050-00006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

115. Spiegel K, Tasali E, Penev P, Van Cauter E. Brief communication: sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med. 2004;141(11):846–850. doi:10.7326/0003-4819-141-11-200412070-00008. [PubMed] [CrossRef] [Google Scholar]

116. Klok MD, Jakobsdottir S, Drent ML. ‘The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes Rev. 2007;8(1):21–34. doi:10.1111/j.1467-789X.2006.00270.x. [PubMed] [CrossRef] [Google Scholar]

117. Buchmann N, Spira D, Norman K, Demuth I, Eckardt R, Steinhagen-Thiessen E. Sleep, muscle mass and muscle function in older people. Deutsches Arzteblatt Int. 2016;113(15):253–260. doi:10.3238/arztebl.2016.0253. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

118. Robertson MD, Russell-Jones D, Umpleby AM, Dijk DJ. Effects of three weeks of mild sleep restriction implemented in the home environment on multiple metabolic and endocrine markers in healthy young men. Metabol Clin Exp. 2013;62(2):204–211. doi:10.1016/j.metabol.2012.07.016. [PubMed] [CrossRef] [Google Scholar]

119. Johnston JD. Physiological responses to food intake throughout the day. Nutr Res Rev. 2014;27(1):107–118. doi:10.1017/S0954422414000055. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

120. Oda H. Chrononutrition. J Nutr Sci Vitaminol. 2015;61:S92–S94. doi:10.3177/jnsv.61.S92. [PubMed] [CrossRef] [Google Scholar]

121. Ruddick-Collins LC, Johnston JD, Morgan PJ, Johnstone AM. The big breakfast study: chrono-nutrition influence on energy expenditure and bodyweight. Nutr Bull. 2018;43(2):174–183. doi:10.1111/nbu.12323. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

122. Johnston JD, Ordovás JM, Scheer FA, Turek FW. Circadian rhythms, metabolism, and chrononutrition in rodents and humans. Adv Nutr. 2016;7(2):399–406. doi:10.3945/an.115.010777. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

123. Buxton OM, Cain SW, Oconnor SP, Porter JH, Duffy JF, Wang W, Czeisler CA, Shea SA. Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption. Sci Transl Med. 2012;4(129):129ra43. doi:10.1126/scitranslmed.3003200. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

124. Scheer FA, Hilton MF, Mantzoros CS, Shea SA. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci USA. 2009;106(11):4453–4458. doi:10.1073/pnas.0808180106. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

125. Garaulet M, Gómez-Abellán P, Alburquerque-Béjar JJ, Lee YC, Ordovás JM, Scheer FA. Timing of food intake predicts weight loss effectiveness. Int J Obes. 2013;37(4):604–611. doi:10.1038/ijo.2012.229. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

126. Jakubowicz D, Barnea M, Wainstein J, Froy O. High caloric intake at breakfast vs. dinner differentially influences weight loss of overweight and obese women. Obesity. 2013;21(12):2504–2512. doi:10.1002/oby.20460. [PubMed] [CrossRef] [Google Scholar]

127. Chang T, Ravi N, Plegue MA, Sonneville KR, Davis MM. Inadequate hydration, BMI, and obesity among US adults: NHANES 2009–2012. Ann Fam Med. 2016;14(4):320–324. doi:10.1370/afm.1951. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

128. Muckelbauer R, Sarganas G, Grüneis A, Müller-Nordhorn J. Association between water consumption and body weight outcomes: a systematic review. Am J Clin Nutr. 2013;98(2):282–299. doi:10.3945/ajcn.112.055061. [PubMed] [CrossRef] [Google Scholar]

129. Daniels MC, Popkin BM. Impact of water intake on energy intake and weight status: a systematic review. Nutr Rev. 2010;68(9):505–521. doi:10.1111/j.1753-4887.2010.00311.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

130. Dennis EA, Dengo AL, Comber DL, Flack KD, Savla J, Davy KP, Davy BM. Water consumption increases weight loss during a hypocaloric diet intervention in middle-aged and older adults. Obesity. 2010;18(2):300–307. doi:10.1038/oby.2009.235. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

131. Popkin BM, Barclay DV, Nielsen SJ. Water and food consumption patterns of U.S. adults from 1999 to 2001. Obes Res. 2005;13(12):2146–2152. doi:10.1038/oby.2005.266. [PubMed] [CrossRef] [Google Scholar]

132. Siler SQ, Neese RA, Hellerstein MK. De novo lipogenesis, lipid kinetics, and whole-body lipid balances in humans after acute alcohol consumption. Am J Clin Nutr. 1999;70(5):928–936. doi:10.1093/ajcn/70.5.928. [PubMed] [CrossRef] [Google Scholar]

133. Kase CA, Piers AD, Schaumberg K, Forman EM, Butryn ML. The relationship of alcohol use to weight loss in the context of behavioral weight loss treatment. Appetite. 2016;99:105–111. doi:10.1016/j.appet.2016.01.014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

134. Stein MD, Friedmann PD. Disturbed sleep and its relationship to alcohol use. Subst Abuse. 2005;26(1):1–13. doi:10.1300/j465v26n01_01. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

135. Chao AM, Wadden TA, Tronieri JS, Berkowitz RI. Alcohol intake and weight loss during intensive lifestyle intervention for adults with overweight or obesity and diabetes. Obesity. 2019;27(1):30–40. doi:10.1002/oby.22316. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

136. French MT, Norton EC, Fang H, Maclean JC. Alcohol consumption and body weight. Health Econ. 2010;19(7):814–832. doi:10.1002/hec.1521. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

137. Levinson CA, Rodebaugh TL. Clarifying the prospective relationships between social anxiety and eating disorder symptoms and underlying vulnerabilities. Appetite. 2016;107:38–46. doi:10.1016/j.appet.2016.07.024. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

138. Poraj-Weder M, Wąsowicz G, Pasternak A. Why it is so hard to lose weight? An exploration of patients' and dietitians' perspectives using thematic analysis. Health Psychol Open. 2021;8(1):20551029211024406. doi:10.1177/20551029211024406. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

139. Blaine B, Rodman J. Responses to weight loss treatment among obese individuals with and without BED: a matched-study meta-analysis. Eat Weight Disord. 2007;12(2):54–60. doi:10.1007/BF03327579. [PubMed] [CrossRef] [Google Scholar]

140. Masheb RM, Lutes LD, Kim HM, Holleman RG, Goodrich DE, Janney CA, Kirsh S, Richardson CR, Damschroder LJ. High-frequency binge eating predicts weight gain among veterans receiving behavioral weight loss treatments. Obesity. 2015;23(1):54–61. doi:10.1002/oby.20931. [PubMed] [CrossRef] [Google Scholar]

141. Delinsky SS, Latner JD, Wilson GT. Binge eating and weight loss in a self-help behavior modification program. Obesity. 2006;14:1244–1249. doi:10.1038/oby.2006.141. [PubMed] [CrossRef] [Google Scholar]

142. Sherwood NE, Jeffery RW, Wing RR. Binge status as a predictor of weight loss treatment outcome. Int J Obes Relat Metabol Disord. 1999;23(5):485–493. doi:10.1038/sj.ijo.0800846. [PubMed] [CrossRef] [Google Scholar]

143. Chao AM, Wadden TA, Gorin AA, Shaw Tronieri J, Pearl RL, Bakizada ZM, Yanovski SZ, Berkowitz RI. Binge eating and weight loss outcomes in individuals with type 2 diabetes: 4-year results from the Look AHEAD Study. Obesity. 2017;25:1830–1837. doi:10.1002/oby.21975. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

144. Herriot AM, Thomas DE, Hart KH, Warren J, Truby H. A qualitative investigation of individuals' experiences and expectations before and after completing a trial of commercial weight loss programmes. J Hum Nutr Diet. 2008;21(1):72–80. doi:10.1111/j.1365-277X.2007.00837.x. [PubMed] [CrossRef] [Google Scholar]

145. Garip G, Yardley L. A synthesis of qualitative research on overweight and obese people’s views and experiences of weight management. Clin Obes. 2011;1(2–3):110–126. doi:10.1111/j.1758-8111.2011.00021.x. [PubMed] [CrossRef] [Google Scholar]

146. Raman J, Smith E, Hay P. The clinical obesity maintenance model: an integration of psychological constructs including mood, emotional regulation, disordered overeating, habitual cluster behaviors, health literacy and cognitive function. J Obes. 2013 doi:10.1155/2013/240128. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

147. Monteiro CA, Cannon G, Moubarac JC, Levy RB, Louzada MLC, Jaime PC. The UN decade of nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutr. 2018;21(1):5–17. doi:10.1017/S1368980017000234. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

148. Hall KD, Ayuketah A, Brychta R, Cai H, Cassimatis T, Chen KY, Chung ST, Costa E, Courville A, Darcey V, Fletcher LA, Forde CG, Gharib AM, Guo J, Howard R, Joseph PV, McGehee S, Ouwerkerk R, Raisinger K, Rozga I, et al. Ultra-processed diets cause excess calorie intake and weight gain: an inpatient randomized controlled trial of ad libitum food intake. Cell Metabol. 2019;30(1):67–77. doi:10.1016/j.cmet.2019.05.008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

149. Swan GE, Powell NA, Knowles BL, Bush MT, Levy LB. A definition of free sugars for the UK. Public Health Nutr. 2018;21(9):1636–1638. doi:10.1017/S136898001800085X. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

150. Blundell JE, Baker JL, Boyland E, Blaak E, Charzewska J, de Henauw S, Frühbeck G, Gonzalez-Gross M, Hebebrand J, Holm L, Kriaucioniene V, Lissner L, Oppert JM, Schindler K, Silva AL, Woodward E. Variations in the prevalence of obesity among European countries, and a consideration of possible causes. Obes Facts. 2017;10(1):25–37. doi:10.1159/000455952. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

151. Scientific Advisory Committee on Nutrition (SACN) Carbohydrates and Health Report. London: The Stationery Office; 2015. [Google Scholar]

152. Wiss DA, Avena N, Rada P. Sugar addiction: from evolution to revolution. Front Psychiatry. 2018 doi:10.3389/FPSYT.2018.00545. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

153. Shearrer GE, O'Reilly GA, Belcher BR, Daniels MJ, Goran MI, Spruijt-Metz D, Davis JN. The impact of sugar sweetened beverage intake on hunger and satiety in minority adolescents. Appetite. 2016;97:43–48. doi:10.1016/j.appet.2015.11.015. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

154. Van Itallie TB. Dietary fiber and obesity. Am J Clin Nutr. 1978;31(10):S43–S52. doi:10.1093/ajcn/31.10.S43. [PubMed] [CrossRef] [Google Scholar]

155. Wanders AJ, van den Borne JJ, de Graaf C, Hulshof T, Jonathan MC, Kristensen M, Mars M, Schols HA, Feskens EJ. Effects of dietary fibre on subjective appetite, energy intake and body weight: a systematic review of randomized controlled trials. Obes Rev. 2011;12(9):724–739. doi:10.1111/j.1467-789X.2011.00895.x. [PubMed] [CrossRef] [Google Scholar]

156. Hervik AK, Svihus B. The role of fiber in energy balance. J Nutr Metabol. 2019 doi:10.1155/2019/4983657. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

157. Rebello CJ, O’Neil CE, Greenway FL. Dietary fiber and satiety: the effects of oats on satiety. Nutr Rev. 2016;74(2):131–147. doi:10.1093/nutrit/nuv063. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

158. Salleh SN, Fairus AAH, Zahary MN, Bhaskar Raj N, Mhd Jalil AM. Unravelling the effects of soluble dietary fibre supplementation on energy intake and perceived satiety in healthy adults: evidence from systematic review and meta-analysis of randomized-controlled trials. Foods. 2019;8(1):15. doi:10.3390/foods8010015. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

159. Block JP, He Y, Zaslavsky AM, Ding L, Ayanian JZ. Psychosocial stress and change in weight among US adults. Am J Epidemiol. 2009;170(2):181–192. doi:10.1093/aje/kwp104. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

160. Tucker LA, Earl AB. Emotional health and weight gain: a prospective study of midlife women. Am J Health Promot. 2010;25(1):30–35. doi:10.4278/ajhp.090122-QUAN-22. [PubMed] [CrossRef] [Google Scholar]

161. Cotter EW, Kelly NR. Stress-related eating, mindfulness, and obesity. Health Psychol. 2018;37(6):516. doi:10.1037/HEA0000614. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

162. Kivimäki M, Head J, Ferrie JE, Shipley MJ, Brunner E, Vahtera J, Marmot MG. Work stress, weight gain and weight loss: evidence for bidirectional effects of job strain on body mass index in the Whitehall II study. Int J Obes. 2006;30(6):982–987. doi:10.1038/sj.ijo.0803229. [PubMed] [CrossRef] [Google Scholar]

163. Fowler-Brown AG, Bennett GG, Goodman MS, Wee CC, Corbie-Smith GM, James SA. Psychosocial stress and 13-year BMI change among blacks: the Pitt County Study. Obesity. 2009;17(11):2106–2109. doi:10.1038/oby.2009.130. [PubMed] [CrossRef] [Google Scholar]

164. Sims R, Gordon S, Garcia W, Clark E, Monye D, Callender C, Campbell A. Perceived stress and eating behaviors in a community-based sample of African Americans. Eat Behav. 2008;9(2):137–142. doi:10.1016/j.eatbeh.2007.06.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

165. Scott KA, Melhorn SJ, Sakai RR. Effects of chronic social stress on obesity. Curr Obes Rep. 2012;1(1):16. doi:10.1007/S13679-011-0006-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

166. Geiker NRW, Astrup A, Hjorth MF, Sjödin A, Pijls L, Markus CR. Does stress influence sleep patterns, food intake, weight gain, abdominal obesity and weight loss interventions and vice versa? Obes Rev. 2018;19(1):81–97. doi:10.1111/obr.12603. [PubMed] [CrossRef] [Google Scholar]

167. Pellegrini CA, Webster J, Hahn KR, Leblond TL, Unick JL. Relationship between stress and weight management behaviors during the COVID-19 pandemic among those enrolled in an internet program. Obes Sci Pract. 2020;7(1):129–134. doi:10.1002/osp4.465. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

168. Xenaki N, Bacopoulou F, Kokkinos A, Nicolaides NC, Chrousos GP, Darviri C. Impact of a stress management program on weight loss, mental health and lifestyle in adults with obesity: a randomized controlled trial. J Mol Biochem. 2018;7(2):78–84. [PMC free article] [PubMed] [Google Scholar]

169. Wing RR, Jeffery RW. Benefits of recruiting participants with friends and increasing social support for weight loss and maintenance. J Consul Clin Psychol. 1999;67(1):132–138. doi:10.1037/0022-006X.67.1.132. [PubMed] [CrossRef] [Google Scholar]

170. Hwang KO, Ottenbacher AJ, Green AP, Cannon-Diehl MR, Richardson O, Bernstam EV, Thomas EJ. Social support in an Internet weight loss community. Int J Med Inform. 2010;79(1):5–13. doi:10.1016/j.ijmedinf.2009.10.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

171. Baranowski T, Thompson WO, DuRant RH, Baranowski J, Puhl J. Observations on physical activity in physical locations: age, gender, ethnicity, and month effects. Res Q Exerc Sport. 1993;64(2):127–133. doi:10.1080/02701367.1993.10608789. [PubMed] [CrossRef] [Google Scholar]

172. Tucker P, Gilliland J. The effect of season and weather on physical activity: a systematic review. Public Health. 2007;121(12):909–922. doi:10.1016/j.puhe.2007.04.009. [PubMed] [CrossRef] [Google Scholar]

173. Klenk J, Buchele G, Rapp K, Franke S, Peter R. Walking on sunshine: effect of weather conditions on physical activity in older people. J Epidemiol Community Health. 2012;66(5):474–476. doi:10.1136/jech.2010.128090. [PubMed] [CrossRef] [Google Scholar]

174. O’Neill AH, Lee S, Yan A, Voorhees CC. Association between weather and physical activity in baltimore teens. Environ Behav. 2013;45(1):138–151. doi:10.1177/0013916511415517. [CrossRef] [Google Scholar]

175. Brook RD, Franklin B, Cascio W, Hong Y, Howard G, Lipsett M, Luepker R, Mittleman M, Samet J, Smith SC, Jr, Tager I, Expert Panel on Population and Prevention Science of the American Heart Association Air pollution and cardiovascular disease: a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation. 2004;109(21):2655–2671. doi:10.1161/01.CIR.0000128587.30041.C8. [PubMed] [CrossRef] [Google Scholar]

176. Dubowsky SD, Suh H, Schwartz J, Coull BA, Gold D, R. Diabetes, obesity, and hypertension may enhance associations between air pollution and markers of systemic inflammation. Environ Health Perspect. 2006;114(7):992–998. doi:10.1289/ehp.8469. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

177. Li X, Wang M, Song Y, Ma H, Zhou T, Liang Z, Qi L. Obesity and the relation between joint exposure to ambient air pollutants and incident type 2 diabetes: a cohort study in UK Biobank. PLoS Med. 2021;18(8):e1003767. doi:10.1371/journal.pmed.1003767. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

178. Ustulin M, Park SY, Chin SO, Chon S, Woo JT, Rhee SY. Air pollution has a significant negative impact on intentional efforts to lose weight: A global scale analysis. Diabetes Metab J. 2018;42(4):320–329. doi:10.4093/dmj.2017.0104. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

179. Ghosh R, Gauderman WJ, Minor H, Youn HA, Lurmann F, Cromar KR, Chatzi L, Belcher B, Fielding CR, McConnell R. Air pollution, weight loss and metabolic benefits of bariatric surgery: a potential model for study of metabolic effects of environmental exposures. Pediatr Obes. 2018;13(5):312–320. doi:10.1111/ijpo.12210. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

180. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev. 2009;30(4):293–342. doi:10.1210/er.2009-0002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

181. Wada K, Sakamoto H, Nishikawa K, Sakuma S, Nakajima A, Fujimoto Y, Kamisaki Y. Life style-related diseases of the digestive system: endocrine disruptors stimulate lipid accumulation in target cells related to metabolic syndrome. J Pharmacol Sci. 2007;105(2):133–137. doi:10.1254/jphs.fm0070034. [PubMed] [CrossRef] [Google Scholar]

182. Lang IA, Galloway TS, Scarlett A, Henley WE, Depledge M, Wallace RB, Melzer D. Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. JAMA. 2008;300(11):1303–1310. doi:10.1001/jama.300.11.1303. [PubMed] [CrossRef] [Google Scholar]

183. Darbre PD. Endocrine Disruptors and Obesity. Current Obesity Reports Springer. 2017;6(1):18–27. doi:10.1007/s13679-017-0240-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

184. Shahnazaryan U, Wójcik M, Bednarczuk T, Kuryłowicz A. Role of obesogens in the pathogenesis of obesity. Medicina. 2019;55(9):515. doi:10.3390/medicina55090515. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

185. Aromataris E, Munn Z, editors. Joanna Briggs Institute reviewer's manual: The Joanna Briggs Institute; 2017.https://reviewersmanual.joannabriggs.org/. Accessed 04 June 2020.

What could be the reasons for not losing weight even after following a weight loss program? (2024)
Top Articles
Latest Posts
Article information

Author: Carlyn Walter

Last Updated:

Views: 5588

Rating: 5 / 5 (50 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Carlyn Walter

Birthday: 1996-01-03

Address: Suite 452 40815 Denyse Extensions, Sengermouth, OR 42374

Phone: +8501809515404

Job: Manufacturing Technician

Hobby: Table tennis, Archery, Vacation, Metal detecting, Yo-yoing, Crocheting, Creative writing

Introduction: My name is Carlyn Walter, I am a lively, glamorous, healthy, clean, powerful, calm, combative person who loves writing and wants to share my knowledge and understanding with you.