Milk and Dairy Products: Good or Bad for Human Bone? Practical Dietary Recommendations for the Prevention and Management of Osteoporosis (2024)

1. Janiszewska M., Kulik T., Dziedzic M., Żołnierczuk-Kieliszek D., Barańska A. Osteoporosis as a Social Problem- Pathogenesis, Symptoms and Risk Factors of Postmenopausal Osteoporosis. Probl. Hig. Epidemiol. 2015;96:106–114. [Google Scholar]

2. Pouresmaeili F., Kamalidehghan B., Kamarehei M., Goh Y.M. A Comprehensive Overview on Osteoporosis and Its Risk Factors. Ther. Clin. Risk Manag. 2018;14:2029–2049. doi:10.2147/TCRM.S138000. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Ratajczak A.E., Rychter A.M., Zawada A., Dobrowolska A., Krela-Kaźmierczak I. Nutrients in the Prevention of Osteoporosis in Patients with Inflammatory Bowel Diseases. Nutrients. 2020;12:1702. doi:10.3390/nu12061702. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

4. Rosen C.J. The Epidemiology and Pathogenesis of Osteoporosis. MDText.com, Inc.; South Dartmouth, MA, USA: 2020. [Google Scholar]

5. Hodges J.K., Cao S., Cladis D.P., Weaver C.M. Lactose Intolerance and Bone Health: The Challenge of Ensuring Adequate Calcium Intake. Nutrients. 2019;11:718. doi:10.3390/nu11040718. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Gordon C.M., Zemel B.S., Wren T.A.L., Leonard M.B., Bachrach L.K., Rauch F., Gilsanz V., Rosen C.J., Winer K.K. The Determinants of Peak Bone Mass. J. Pediatrics. 2017;180:261–269. doi:10.1016/j.jpeds.2016.09.056. [PubMed] [CrossRef] [Google Scholar]

7. Osteoporosis: Peak Bone Mass in Women|NIH Osteoporosis and Related Bone Diseases National Resource Center. [(accessed on 19 December 2020)]; Available online: https://www.bones.nih.gov/health-info/bone/osteoporosis/bone-mass

8. Weaver C.M., Gordon C.M., Janz K.F., Kalkwarf H.J., Lappe J.M., Lewis R., O’Karma M., Wallace T.C., Zemel B.S. The National Osteoporosis Foundation’s Position Statement on Peak Bone Mass Development and Lifestyle Factors: A Systematic Review and Implementation Recommendations. Osteoporos. Int. 2016;27:1281–1386. doi:10.1007/s00198-015-3440-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. McGuigan F.E.A., Murray L., Gallagher A., Davey-Smith G., Neville C.E., Van’t Hof R., Boreham C., Ralston S.H. Genetic and Environmental Determinants of Peak Bone Mass in Young Men and Women. J. Bone Miner. Res. 2002;17:1273–1279. doi:10.1359/jbmr.2002.17.7.1273. [PubMed] [CrossRef] [Google Scholar]

10. Muscogiuri G., Barrea L., Altieri B., Di Somma C., Bhattoa H.P., Laudisio D., Duval G.T., Pugliese G., Annweiler C., Orio F., et al. Calcium and Vitamin D Supplementation. Myths and Realities with Regard to Cardiovascular Risk. Curr. Vasc. Pharmacol. 2019;17:610–617. doi:10.2174/1570161117666190408165805. [PubMed] [CrossRef] [Google Scholar]

11. Fischer V., Haffner-Luntzer M., Amling M., Ignatius A. Calcium and Vitamin D in Bone Fracture Healing and Post-Traumatic Bone Turnover. Eur. Cell Mater. 2018;35:365–385. doi:10.22203/eCM.v035a25. [PubMed] [CrossRef] [Google Scholar]

12. Dadra A., Aggarwal S., Kumar P., Kumar V., Dibar D.P., Bhadada S.K. High Prevalence of Vitamin D Deficiency and Osteoporosis in Patients with Fragility Fractures of Hip: A Pilot Study. J. Clin. Orthop. Trauma. 2019;10:1097–1100. doi:10.1016/j.jcot.2019.03.012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Lee J.S., Kim J.W. Prevalence of Vitamin D Deficiency in Postmenopausal High- and Low-Energy Fracture Patient. Arch. Osteoporos. 2018;13:109. doi:10.1007/s11657-018-0524-7. [PubMed] [CrossRef] [Google Scholar]

14. Warburton D.E.R., Nicol C.W., Bredin S.S.D. Health Benefits of Physical Activity: The Evidence. CMAJ. 2006;174:801–809. doi:10.1503/cmaj.051351. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Maggio A.B.R., Rizzoli R.R., Marchand L.M., Ferrari S., Beghetti M., Farpour-Lambert N.J. Physical Activity Increases Bone Mineral Density in Children with Type 1 Diabetes. Med. Sci. Sports Exerc. 2012;44:1206–1211. doi:10.1249/MSS.0b013e3182496a25. [PubMed] [CrossRef] [Google Scholar]

16. Chan D.-C., Chang C.-B., Han D.-S., Hong C.-H., Hwang J.-S., Tsai K.-S., Yang R.-S. Effects of Exercise Improves Muscle Strength and Fat Mass in Patients with High Fracture Risk: A Randomized Control Trial. J. Formos. Med. Assoc. 2018;117:572–582. doi:10.1016/j.jfma.2017.05.004. [PubMed] [CrossRef] [Google Scholar]

17. Calcium Content of Common Foods | International Osteoporosis Foundation. [(accessed on 14 December 2020)]; Available online: https://www.osteoporosis.foundation/patients/prevention/calcium-content-of-common-foods

18. Office of Dietary Supplements-Calcium. [(accessed on 8 December 2020)]; Available online: https://ods.od.nih.gov/factsheets/Calcium-Consumer/

19. Ballard O., Morrow A.L. Human Milk Composition: Nutrients and Bioactive Factors. Pediatr. Clin. North. Am. 2013;60:49–74. doi:10.1016/j.pcl.2012.10.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Hytten F.E. Clinical and Chemical Studies in Human Lactation. VIII. Relationship of the Age, Physique, and Nutritional Status of the Mother to the Yield and Composition of Her Milk. Br. Med. J. 1954;2:844–845. doi:10.1136/bmj.2.4892.844. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Thomson A.M., Black A.E. Nutritional Aspects of Human Lactation. Bull. World Health Organ. 1975;52:163–177. [PMC free article] [PubMed] [Google Scholar]

22. Mosca F., Giannì M.L. Human Milk: Composition and Health Benefits. Pediatr. Med. Chir. 2017;39:155. doi:10.4081/pmc.2017.155. [PubMed] [CrossRef] [Google Scholar]

23. Gopalan C. Effect of Nutrition on Pregnancy and Lactation. Bull. World Health Organ. 1962;26:203–211. [PMC free article] [PubMed] [Google Scholar]

24. Pietrzak-Fiećko R., Kamelska-Sadowska A.M. The Comparison of Nutritional Value of Human Milk with Other Mammals’ Milk. Nutrients. 2020;12:1404. doi:10.3390/nu12051404. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. Patin R.V., Vítolo M.R., Valverde M.A., Carvalho P.O., Pastore G.M., Lopez F.A. The Influence of Sardine Consumption on the Omega-3 Fatty Acid Content of Mature Human Milk. J. Pediatr. 2006;82:63–69. doi:10.2223/JPED.1439. [PubMed] [CrossRef] [Google Scholar]

26. Loughrill E., Wray D., Christides T., Zand N. Calcium to Phosphorus Ratio, Essential Elements and Vitamin D Content of Infant Foods in the UK: Possible Implications for Bone Health. Matern. Child. Nutr. 2017;13:e12368. doi:10.1111/mcn.12368. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Mahdi A.A., Brown R.B., Razzaque M.S. Osteoporosis in Populations with High Calcium Intake: Does Phosphate Toxicity Explain the Paradox? Ind. J. Clin. Biochem. 2015;30:365–367. doi:10.1007/s12291-015-0524-y. [CrossRef] [Google Scholar]

28. Burgess K. In: Milk and Dairy Products in Human Nutrition. Muehlhoff E., Bennett A., McMahon D., editors. Food and Agriculture Organisation of the United Nations (FAO); Rome, Italy: 2013. [CrossRef] [Google Scholar]

29. Aparicio M., Browne P.D., Hechler C., Beijers R., Rodríguez J.M., de Weerth C., Fernández L. Human Milk Cortisol and Immune Factors over the First Three Postnatal Months: Relations to Maternal Psychosocial Distress. PLoS ONE. 2020;15:e0233554. doi:10.1371/journal.pone.0233554. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Al-Agha A.E., Kabli Y.O., AlBeiruty M.G., Milyani A.A. Determinants of Bone Mineral Density through Quantitative Ultrasound Screening of Healthy Children Visiting Ambulatory Paediatric Clinics. Saudi Med. J. 2019;40:560–567. doi:10.15537/smj.2019.6.24234. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. Blanco E., Burrows R., Reyes M., Lozoff B., Gahagan S., Albala C. Breastfeeding as the Sole Source of Milk for 6 Months and Adolescent Bone Mineral Density. Osteoporos. Int. 2017;28:2823–2830. doi:10.1007/s00198-017-4106-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. van den Hooven E.H., Gharsalli M., Heppe D.H.M., Raat H., Hofman A., Franco O.H., Rivadeneira F., Jaddoe V.W.V. Associations of Breast-Feeding Patterns and Introduction of Solid Foods with Childhood Bone Mass: The Generation R Study. Br. J. Nutr. 2016;115:1024–1032. doi:10.1017/S0007114515005462. [PubMed] [CrossRef] [Google Scholar]

33. Hwang I.R., Choi Y.K., Lee W.K., Kim J.G., Lee I.K., Kim S.W., Park K.G. Association between Prolonged Breastfeeding and Bone Mineral Density and Osteoporosis in Postmenopausal Women: KNHANES 2010–2011. Osteoporos. Int. 2016;27:257–265. doi:10.1007/s00198-015-3292-x. [PubMed] [CrossRef] [Google Scholar]

34. Tsvetov G., Levy S., Benbassat C., Shraga-slu*tzky I., Hirsch D. Influence of Number of Deliveries and Total Breast-Feeding Time on Bone Mineral Density in Premenopausal and Young Postmenopausal Women. Maturitas. 2014;77:249–254. doi:10.1016/j.maturitas.2013.11.003. [PubMed] [CrossRef] [Google Scholar]

35. Bolzetta F., Veronese N., De Rui M., Berton L., Carraro S., Pizzato S., Girotti G., De Ronch I., Manzato E., Coin A., et al. Duration of Breastfeeding as a Risk Factor for Vertebral Fractures. Bone. 2014;68:41–45. doi:10.1016/j.bone.2014.08.001. [PubMed] [CrossRef] [Google Scholar]

36. Cooke-Hubley S., Gao Z., Mugford G., Kaiser S.M., Goltzman D., Leslie W.D., Davison K.S., Brown J.P., Probyn L., Lentle B., et al. Parity and Lactation Are Not Associated with Incident Fragility Fractures or Radiographic Vertebral Fractures over 16 Years of Follow-up: Canadian Multicentre Osteoporosis Study (CaMos) Arch. Osteoporos. 2019;14:49. doi:10.1007/s11657-019-0601-6. [PubMed] [CrossRef] [Google Scholar]

37. Kovacs C.S. Calcium and Phosphate Metabolism and Related Disorders during Pregnancy and Lactation. In: Feingold K.R., Anawalt B., Boyce A., Chrousos G., de Herder W.W., Dungan K., Grossman A., Hershman J.M., Hofland J., Kaltsas G., et al., editors. Endotext. MDText.com, Inc.; South Dartmouth, MA, USA: 2000. [PubMed] [Google Scholar]

38. Tunick M.H., Van Hekken D.L. Dairy Products and Health: Recent Insights. J. Agric. Food Chem. 2015;63:9381–9388. doi:10.1021/jf5042454. [PubMed] [CrossRef] [Google Scholar]

39. Aryana K.J., Olson D.W. A 100-Year Review: Yogurt and Other Cultured Dairy Products. J. Dairy Sci. 2017;100:9987–10013. doi:10.3168/jds.2017-12981. [PubMed] [CrossRef] [Google Scholar]

40. Kalkwarf H.J., Khoury J.C., Lanphear B.P. Milk Intake during Childhood and Adolescence, Adult Bone Density, and Osteoporotic Fractures in US Women. Am. J. Clin. Nutr. 2003;77:257–265. doi:10.1093/ajcn/77.1.257. [PubMed] [CrossRef] [Google Scholar]

41. Thorning T.K., Raben A., Tholstrup T., Soedamah-Muthu S.S., Givens I., Astrup A. Milk and Dairy Products: Good or Bad for Human Health? An Assessment of the Totality of Scientific Evidence. Food Nutr. Res. 2016;60:32527. doi:10.3402/fnr.v60.32527. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Goulding A., Rockell J.E.P., Black R.E., Grant A.M., Jones I.E., Williams S.M. Children Who Avoid Drinking Cow’s Milk Are at Increased Risk for Prepubertal Bone Fractures. J. Am. Diet. Assoc. 2004;104:250–253. doi:10.1016/j.jada.2003.11.008. [PubMed] [CrossRef] [Google Scholar]

43. Wiley A.S. Does Milk Make Children Grow? Relationships between Milk Consumption and Height in NHANES 1999–2002. Am. J. Hum. Biol. 2005;17:425–441. doi:10.1002/ajhb.20411. [PubMed] [CrossRef] [Google Scholar]

44. Bielemann R.M., dos S Vaz J., Domingues M.R., Matijasevich A., Santos I.S., Ekelund U., Horta B.L. Are Consumption of Dairy Products and Physical Activity Independently Related to Bone Mineral Density of 6-Year-Old Children? Longitudinal and Cross-Sectional Analyses in a Birth Cohort from Brazil. Public Health Nutr. 2018;21:2654–2664. doi:10.1017/S1368980018001258. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

45. Sioen I., Michels N., Polfliet C., De Smet S., D’Haese S., Roggen I., Deschepper J., Goemaere S., Valtueña J., De Henauw S. The Influence of Dairy Consumption, Sedentary Behaviour and Physical Activity on Bone Mass in Flemish Children: A Cross-Sectional Study. BMC Public Health. 2015;15:717. doi:10.1186/s12889-015-2077-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Torres-Costoso A., López-Muñoz P., Ferri-Morales A., Bravo-Morales E., Martínez-Vizcaíno V., Garrido-Miguel M. Body Mass Index, Lean Mass, and Body Fat Percentage as Mediators of the Relationship between Milk Consumption and Bone Health in Young Adults. Nutrients. 2019;11:2500. doi:10.3390/nu11102500. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. van Dongen L.H., Kiel D.P., Soedamah-Muthu S.S., Bouxsein M.L., Hannan M.T., Sahni S. Higher Dairy Food Intake Is Associated With Higher Spine Quantitative Computed Tomography (QCT) Bone Measures in the Framingham Study for Men But Not Women. J. Bone Miner. Res. 2018;33:1283–1290. doi:10.1002/jbmr.3414. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Mangano K.M., Noel S.E., Sahni S., Tucker K.L. Higher Dairy Intakes Are Associated with Higher Bone Mineral Density among Adults with Sufficient Vitamin D Status: Results from the Boston Puerto Rican Osteoporosis Study. J. Nutr. 2019;149:139–148. doi:10.1093/jn/nxy234. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Hallkvist O.M., Johansson J., Nordström A., Nordström P., Hult A. Dairy Product Intake and Bone Properties in 70-Year-Old Men and Women. Arch. Osteoporos. 2018;13:9. doi:10.1007/s11657-018-0420-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Michaëlsson K., Wolk A., Langenskiöld S., Basu S., Warensjö Lemming E., Melhus H., Byberg L. Milk Intake and Risk of Mortality and Fractures in Women and Men: Cohort Studies. BMJ. 2014;349:g6015. doi:10.1136/bmj.g6015. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Rozenberg S., Body J.-J., Bruyère O., Bergmann P., Brandi M.L., Cooper C., Devogelaer J.-P., Gielen E., Goemaere S., Kaufman J.-M., et al. Effects of Dairy Products Consumption on Health: Benefits and Beliefs—Commentary from the Belgian Bone Club and the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases. Calcif. Tissue Int. 2016;98:1–17. doi:10.1007/s00223-015-0062-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Infante D., Tormo R. Risk of Inadequate Bone Mineralization in Diseases Involving Long-Term Suppression of Dairy Products. J. Pediatric Gastroenterol. Nutr. 2000;30:310–313. doi:10.1097/00005176-200003000-00018. [PubMed] [CrossRef] [Google Scholar]

53. Matía-Martín P., Torrego-Ellacuría M., Larrad-Sainz A., Fernández-Pérez C., Cuesta-Triana F., Rubio-Herrera M.Á. Effects of Milk and Dairy Products on the Prevention of Osteoporosis and Osteoporotic Fractures in Europeans and Non-Hispanic Whites from North America: A Systematic Review and Updated Meta-Analysis. Adv. Nutr. 2019;10:S120–S143. doi:10.1093/advances/nmy097. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Tang A.L., Walker K.Z., Wilcox G., Strauss B.J., Ashton J.F., Stojanovska L. Calcium Absorption in Australian Osteopenic Post-Menopausal Women: An Acute Comparative Study of Fortified Soymilk to Cows’ Milk. Asia Pac. J. Clin. Nutr. 2010;19:243–249. [PubMed] [Google Scholar]

55. Heaney R.P., Dowell M.S., Rafferty K., Bierman J. Bioavailability of the Calcium in Fortified Soy Imitation Milk, with Some Observations on Method. Am. J. Clin. Nutr. 2000;71:1166–1169. doi:10.1093/ajcn/71.5.1166. [PubMed] [CrossRef] [Google Scholar]

56. Geiker N.R.W., Mølgaard C., Iuliano S., Rizzoli R., Manios Y., van Loon L.J.C., Lecerf J.-M., Moschonis G., Reginster J.-Y., Givens I., et al. Impact of Whole Dairy Matrix on Musculoskeletal Health and Aging–Current Knowledge and Research Gaps. Osteoporos. Int. 2020;31:601–615. doi:10.1007/s00198-019-05229-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Lee G.J., Birken C.S., Parkin P.C., Lebovic G., Chen Y., L’Abbé M.R., Maguire J.L. TARGet Kids! Collaboration Consumption of Non-Cow’s Milk Beverages and Serum Vitamin D Levels in Early Childhood. CMAJ. 2014;186:1287–1293. doi:10.1503/cmaj.140555. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Gui J.-C., Brašić J.R., Liu X.-D., Gong G.-Y., Zhang G.-M., Liu C.-J., Gao G.-Q. Bone Mineral Density in Postmenopausal Chinese Women Treated with Calcium Fortification in Soymilk and Cow’s Milk. Osteoporos. Int. 2012;23:1563–1570. doi:10.1007/s00198-012-1895-z. [PubMed] [CrossRef] [Google Scholar]

59. García-Martín A., Quesada Charneco M., Alvárez Guisado A., Jiménez Moleón J.J., Fonollá Joya J., Muñoz-Torres M. Effect of milk product with soy isoflavones on quality of life and bone metabolism in postmenopausal Spanish women: Randomized trial. Med. Clin. 2012;138:47–51. doi:10.1016/j.medcli.2011.04.033. [PubMed] [CrossRef] [Google Scholar]

60. Lydeking-Olsen E., Beck-Jensen J.-E., Setchell K.D.R., Holm-Jensen T. Soymilk or Progesterone for Prevention of Bone Loss—A 2 Year Randomized, Placebo-Controlled Trial. Eur. J. Nutr. 2004;43:246–257. doi:10.1007/s00394-004-0497-8. [PubMed] [CrossRef] [Google Scholar]

61. Yanaka K., Higuchi M., Ishimi Y. Anti-Osteoporotic Effect of Soy Isoflavones Intake on Low Bone Mineral Density Caused by Voluntary Exercise and Food Restriction in Mature Female Rats. J. Nutr. Sci. Vitam. 2019;65:335–342. doi:10.3177/jnsv.65.335. [PubMed] [CrossRef] [Google Scholar]

62. Choi C.-W., Choi S.-W., Kim H.-J., Lee K.-S., Kim S.-H., Kim S.-L., Do S.H., Seo W.-D. Germinated Soy Germ with Increased Soyasaponin Ab Improves BMP-2-Induced Bone Formation and Protects against in Vivo Bone Loss in Osteoporosis. Sci. Rep. 2018;8:12970. doi:10.1038/s41598-018-31118-w. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Matthews V.L., Knutsen S.F., Beeson W.L., Fraser G.E. Soy Milk and Dairy Consumption Are Independently Associated with Ultrasound Attenuation of the Heel Bone among Postmenopausal Women: The Adventist Health Study-2 (AHS-2) Nutr. Res. 2011;31:766–775. doi:10.1016/j.nutres.2011.09.016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Ambroszkiewicz J., Klemarczyk W., Gajewska J., Chełchowska M., Franek E., Laskowska-Klita T. The Influence of Vegan Diet on Bone Mineral Density and Biochemical Bone Turnover Markers. Pediatr. Endocrinol. Diabetes Metab. 2010;16:201–204. [PubMed] [Google Scholar]

65. Vitoria I. The Nutritional Limitations of Plant-Based Beverages in Infancy and Childhood. Nutr. Hosp. 2017;34:1205–1214. doi:10.20960/nh.931. [PubMed] [CrossRef] [Google Scholar]

66. Kowalska D., Gruczyńska E., Bryś J. Mother’s Milk—First Food in Human Life. Probl. Hig. Epidemiol. 2015;96:387–398. [Google Scholar]

67. Guetouache M., Guessas B., Medjekal S. Composition and Nutritional Value of Raw Milk. Issues Biol. Sci. Pharm. Res. 2014;2:115–122. [Google Scholar]

68. Paul A.A., Kumar S., Kumar V., Sharma R. Milk Analog: Plant Based Alternatives to Conventional Milk, Production, Potential and Health Concerns. Crit. Rev. Food Sci. Nutr. 2020;60:3005–3023. doi:10.1080/10408398.2019.1674243. [PubMed] [CrossRef] [Google Scholar]

69. Kunachowicz H., Przygoda B., Nadolna I., Iwanow K. Tabele Skłądu I Wartości Odżywczej Żywności. 2nd ed. PZWL Wydawnictwo Lekarskie; Warszawa, Poland: 2017. [Google Scholar]

70. Heaney R.P. Dairy Intake, Dietary Adequacy, and Lactose Intolerance12. Adv. Nutr. 2013;4:151–156. doi:10.3945/an.112.003368. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

71. Keith J.N., Nicholls J., Reed A., Kafer K., Miller G.D. The Prevalence of Self-Reported Lactose Intolerance and the Consumption of Dairy Foods among African American Adults Are Less than Expected. J. Natl. Med. Assoc. 2011;103:36–45. doi:10.1016/S0027-9684(15)30241-8. [PubMed] [CrossRef] [Google Scholar]

72. Ratajczak A.E., Rychter A.M., Zawada A., Dobrowolska A., Krela-Kaźmierczak I. Lactose Intolerance in Patients with Inflammatory Bowel Diseases and Dietary Management in Prevention of Osteoporosis. Nutrition. 2020;82:111043. doi:10.1016/j.nut.2020.111043. [PubMed] [CrossRef] [Google Scholar]

73. Treister-Goltzman Y., Friger M., Peleg R. Does Primary Lactase Deficiency Reduce Bone Mineral Density in Postmenopausal Women? A Systematic Review and Meta-Analysis. Osteoporos. Int. 2018;29:2399–2407. doi:10.1007/s00198-018-4635-1. [PubMed] [CrossRef] [Google Scholar]

74. Klemm P., Dischereit G., Lange U. Adult Lactose Intolerance, Calcium Intake, Bone Metabolism and Bone Density in German-Turkish Immigrants. J. Bone Miner. Metab. 2019;38:378–384. doi:10.1007/s00774-019-01070-4. [PubMed] [CrossRef] [Google Scholar]

75. Mnich B., Spinek A.E., Chyleński M., Sommerfeld A., Dabert M., Juras A., Szostek K. Analysis of LCT-13910 Genotypes and Bone Mineral Density in Ancient Skeletal Materials. PLoS ONE. 2018;13:e0194966. doi:10.1371/journal.pone.0194966. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

76. Domínguez-García V., Flores-Merino M.V., Morales-Romero J., Bedolla-Pulido A., Mariscal-Castro J., Bedolla-Barajas M. Allergy to cow’s milk protein, or lactose intolerance: A cross-sectional study in university students. Rev. Alerg. Mex. 2019;66:394–402. doi:10.29262/ram.v66i4.640. [PubMed] [CrossRef] [Google Scholar]

77. Nachshon L., Goldberg M.R., Schwartz N., Sinai T., Amitzur-Levy R., Elizur A., Eisenberg E., Katz Y. Decreased Bone Mineral Density in Young Adult IgE-Mediated Cow’s Milk-Allergic Patients. J. Allergy Clin. Immunol. 2014;134:1108–1113.e3. doi:10.1016/j.jaci.2014.06.026. [PubMed] [CrossRef] [Google Scholar]

78. Mailhot G., Perrone V., Alos N., Dubois J., Delvin E., Paradis L., Des Roches A. Cow’s Milk Allergy and Bone Mineral Density in Prepubertal Children. Pediatrics. 2016;137:e20151742. doi:10.1542/peds.2015-1742. [PubMed] [CrossRef] [Google Scholar]

79. Yu J.W., Pekeles G., Legault L., McCusker C.T. Milk Allergy and Vitamin D Deficiency Rickets: A Common Disorder Associated with an Uncommon Disease. Ann. Allergy Asthma Immunol. 2006;96:615–619. doi:10.1016/S1081-1206(10)63558-2. [PubMed] [CrossRef] [Google Scholar]

80. Marcobal A., Barboza M., Froehlich J.W., Block D.E., German J.B., Lebrilla C.B., Mills D.A. Consumption of Human Milk Oligosaccharides by Gut-Related Microbes. J. Agric. Food Chem. 2010;58:5334–5340. doi:10.1021/jf9044205. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Sakurama H., Kiyohara M., Wada J., Honda Y., Yamaguchi M., f*ckiya S., Yokota A., Ashida H., Kumagai H., Kitaoka M., et al. Lacto- N -Biosidase Encoded by a Novel Gene of Bifidobacterium Longum Subspecies Longum Shows Unique Substrate Specificity and Requires a Designated Chaperone for Its Active Expression. J. Biol. Chem. 2013;288:25194–25206. doi:10.1074/jbc.M113.484733. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Matsuki T., Yahagi K., Mori H., Matsumoto H., Hara T., Tajima S., Ogawa E., Kodama H., Yamamoto K., Yamada T., et al. A Key Genetic Factor for Fucosyllactose Utilization Affects Infant Gut Microbiota Development. Nat. Commun. 2016;7:11939. doi:10.1038/ncomms11939. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Li C., Huang Q., Yang R., Dai Y., Zeng Y., Tao L., Li X., Zeng J., Wang Q. Gut Microbiota Composition and Bone Mineral Loss—Epidemiologic Evidence from Individuals in Wuhan, China. Osteoporos. Int. 2019;30:1003–1013. doi:10.1007/s00198-019-04855-5. [PubMed] [CrossRef] [Google Scholar]

84. Levast B., Li Z., Madrenas J. The Role of IL-10 in Microbiome-Associated Immune Modulation and Disease Tolerance. Cytokine. 2015;75:291–301. doi:10.1016/j.cyto.2014.11.027. [PubMed] [CrossRef] [Google Scholar]

85. Brandtzaeg P. Mucosal Immunity: Integration between Mother and the Breast-Fed Infant. Vaccine. 2003;21:3382–3388. doi:10.1016/S0264-410X(03)00338-4. [PubMed] [CrossRef] [Google Scholar]

86. Chichlowski M., De Lartigue G., German J.B., Raybould H.E., Mills D.A. Bifidobacteria Isolated From Infants and Cultured on Human Milk Oligosaccharides Affect Intestinal Epithelial Function. J. Pediatric Gastroenterol. Nutr. 2012;55:321–327. doi:10.1097/MPG.0b013e31824fb899. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

87. Jeurink P.V., van Bergenhenegouwen J., Jiménez E., Knippels L.M.J., Fernández L., Garssen J., Knol J., Rodríguez J.M., Martín R. Human Milk: A Source of More Life than We Imagine. Benef. Microbes. 2013;4:17–30. doi:10.3920/BM2012.0040. [PubMed] [CrossRef] [Google Scholar]

88. Jost T., Lacroix C., Braegger C., Chassard C. Assessment of Bacterial Diversity in Breast Milk Using Culture-Dependent and Culture-Independent Approaches. Br. J. Nutr. 2013;110:1253–1262. doi:10.1017/S0007114513000597. [PubMed] [CrossRef] [Google Scholar]

89. Brink L.R., Mercer K.E., Piccolo B.D., Chintapalli S.V., Elolimy A., Bowlin A.K., Matazel K.S., Pack L., Adams S.H., Shankar K., et al. Neonatal Diet Alters Fecal Microbiota and Metabolome Profiles at Different Ages in Infants Fed Breast Milk or Formula. Am. J. Clin. Nutr. 2020;111:1190–1202. doi:10.1093/ajcn/nqaa076. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

90. Yun B., Maburutse B.E., Kang M., Park M.R., Park D.J., Kim Y., Oh S. Short Communication: Dietary Bovine Milk–Derived Exosomes Improve Bone Health in an Osteoporosis-Induced Mouse Model. J. Dairy Sci. 2020;103:7752–7760. doi:10.3168/jds.2019-17501. [PubMed] [CrossRef] [Google Scholar]

91. Nilsson A.G., Sundh D., Bäckhed F., Lorentzon M. Lactobacillus Reuteri Reduces Bone Loss in Older Women with Low Bone Mineral Density: A Randomized, Placebo-Controlled, Double-Blind, Clinical Trial. J. Intern. Med. 2018;284:307–317. doi:10.1111/joim.12805. [PubMed] [CrossRef] [Google Scholar]

92. Jafarnejad S., Djafarian K., Fazeli M.R., Yekaninejad M.S., Rostamian A., Keshavarz S.A. Effects of a Multispecies Probiotic Supplement on Bone Health in Osteopenic Postmenopausal Women: A Randomized, Double-Blind, Controlled Trial. Null. 2017;36:497–506. doi:10.1080/07315724.2017.1318724. [PubMed] [CrossRef] [Google Scholar]

93. Jones M.L., Martoni C.J., Prakash S. Oral Supplementation With Probiotic L. Reuteri NCIMB 30242 Increases Mean Circulating 25-Hydroxyvitamin D: A Post Hoc Analysis of a Randomized Controlled Trial. J. Clin. Endocrinol. Metab. 2013;98:2944–2951. doi:10.1210/jc.2012-4262. [PubMed] [CrossRef] [Google Scholar]

94. Biver E., Durosier-Izart C., Merminod F., Chevalley T., van Rietbergen B., Ferrari S.L., Rizzoli R. Fermented Dairy Products Consumption Is Associated with Attenuated Cortical Bone Loss Independently of Total Calcium, Protein, and Energy Intakes in Healthy Postmenopausal Women. Osteoporos. Int. 2018;29:1771–1782. doi:10.1007/s00198-018-4535-4. [PubMed] [CrossRef] [Google Scholar]

95. Tu M.-Y., Han K.-Y., Chang G.R.-L., Lai G.-D., Chang K.-Y., Chen C.-F., Lai J.-C., Lai C.-Y., Chen H.-L., Chen C.-M. Kefir Peptides Prevent Estrogen Deficiency-Induced Bone Loss and Modulate the Structure of the Gut Microbiota in Ovariectomized Mice. Nutrients. 2020;12:3432. doi:10.3390/nu12113432. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

96. Whisner C.M., Castillo L.F. Prebiotics, Bone and Mineral Metabolism. Calcif. Tissue Int. 2018;102:443–479. doi:10.1007/s00223-017-0339-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Markowiak P., Śliżewska K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients. 2017;9:1021. doi:10.3390/nu9091021. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Lee Y.K., Salminen S., editors. Handbook of Probiotics and Prebiotics. Wiley; Hoboken, NJ, USA: 2008. [Google Scholar]

99. Bornet F.R.J., Brouns F., Tashiro Y., Duvillier V. Nutritional Aspects of Short-Chain Fructooligosaccharides: Natural Occurrence, Chemistry, Physiology and Health Implications. Dig. Liver Dis. 2002;34:S111–S120. doi:10.1016/S1590-8658(02)80177-3. [PubMed] [CrossRef] [Google Scholar]

100. Vulevic J., Juric A., Walton G.E., Claus S.P., Tzortzis G., Toward R.E., Gibson G.R. Influence of Galacto-Oligosaccharide Mixture (B-GOS) on Gut Microbiota, Immune Parameters and Metabonomics in Elderly Persons. Br. J. Nutr. 2015;114:586–595. doi:10.1017/S0007114515001889. [PubMed] [CrossRef] [Google Scholar]

101. Scholz-Ahrens K.E., Ade P., Marten B., Weber P., Timm W., Aςil Y., Glüer C.-C., Schrezenmeir J. Prebiotics, Probiotics, and Synbiotics Affect Mineral Absorption, Bone Mineral Content, and Bone Structure. J. Nutr. 2007;137:838S–846S. doi:10.1093/jn/137.3.838S. [PubMed] [CrossRef] [Google Scholar]

102. Timan P., Rojanasthien N., Manorot M., Sangdee C., Teekachunhatean S. Effect of Synbiotic Fermented Milk on Oral Bioavailability of Isoflavones in Postmenopausal Women. Null. 2014;65:761–767. doi:10.3109/09637486.2014.908169. [PubMed] [CrossRef] [Google Scholar]

103. Yano J.M., Yu K., Donaldson G.P., Shastri G.G., Ann P., Ma L., Nagler C.R., Ismagilov R.F., Mazmanian S.K., Hsiao E.Y. Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis. Cell. 2015;161:264–276. doi:10.1016/j.cell.2015.02.047. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

104. Kode A., Mosialou I., Silva B.C., Rached M.-T., Zhou B., Wang J., Townes T.M., Hen R., DePinho R.A., Guo X.E., et al. FOXO1 Orchestrates the Bone-Suppressing Function of Gut-Derived Serotonin. J. Clin. Investig. 2012;122:3490–3503. doi:10.1172/JCI64906. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

105. Lawenius L., Scheffler J.M., Gustafsson K.L., Henning P., Nilsson K.H., Colldén H., Islander U., Plovier H., Cani P.D., de Vos W.M., et al. Pasteurized Akkermansia Muciniphila Protects from Fat Mass Gain but Not from Bone Loss. Am. J. Physiol. Endocrinol. Metab. 2020;318:E480–E491. doi:10.1152/ajpendo.00425.2019. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

106. Lei M., Guo C., Wang D., Zhang C., Hua L. The Effect of Probiotic Lactobacillus Casei Shirota on Knee Osteoarthritis: A Randomised Double-Blind, Placebo-Controlled Clinical Trial. Benef. Microbes. 2017;8:697–703. doi:10.3920/BM2016.0207. [PubMed] [CrossRef] [Google Scholar]

107. Soto A., Martín V., Jiménez E., Mader I., Rodríguez J.M., Fernández L. Lactobacilli and Bifidobacteria in Human Breast Milk: Influence of Antibiotherapy and Other Host and Clinical Factors. J. Pediatr. Gastroenterol. Nutr. 2014;59:78–88. doi:10.1097/MPG.0000000000000347. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

108. Cabrera-Rubio R., Collado M.C., Laitinen K., Salminen S., Isolauri E., Mira A. The Human Milk Microbiome Changes over Lactation and Is Shaped by Maternal Weight and Mode of Delivery. Am. J. Clin. Nutr. 2012;96:544–551. doi:10.3945/ajcn.112.037382. [PubMed] [CrossRef] [Google Scholar]

109. Igras S. Characteristics of milk of various animal and human species. J. NutriLife. 2012;5 [Google Scholar]

110. Pisano M.B., Deplano M., Fadda M.E., Cosentino S. Microbiota of Sardinian Goat’s Milk and Preliminary Characterization of Prevalent LAB Species for Starter or Adjunct Cultures Development. BioMed Res. Int. 2019;2019:e6131404. doi:10.1155/2019/6131404. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

111. Yeo S.-K., Liong M.-T. Angiotensin I-Converting Enzyme Inhibitory Activity and Bioconversion of Isoflavones by Probiotics in Soymilk Supplemented with Prebiotics. Null. 2010;61:161–181. doi:10.3109/09637480903348122. [PubMed] [CrossRef] [Google Scholar]

112. Zielińska D. Selecting Suitable Bacterial Strains of Lactobacillus and Identifying Soya Drink Fermentation Conditions. Żywność. Nauka. Technologia. Jakość 2005;2:189–297. [Google Scholar]

113. Gupta S., Cox S., Abu-Ghannam N. Process Optimization for the Development of a Functional Beverage Based on Lactic Acid Fermentation of Oats. Biochem. Eng. J. 2010;52:199–204. doi:10.1016/j.bej.2010.08.008. [CrossRef] [Google Scholar]

114. Gamba R.R., Yamamoto S., Abdel-Hamid M., Sasaki T., Michihata T., Koyanagi T., Enomoto T. Chemical, Microbiological, and Functional Characterization of Kefir Produced from Cow’s Milk and Soy Milk. Int. J. Microbiol. 2020;2020:1–11. doi:10.1155/2020/7019286. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

115. Vandenplas Y., Brueton M., Dupont C., Hill D., Isolauri E., Koletzko S., Oranje A.P., Staiano A. Guidelines for the Diagnosis and Management of Cow’s Milk Protein Allergy in Infants. Arch. Dis. Child. 2007;92:902–908. doi:10.1136/adc.2006.110999. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

116. Hojsak I., Bronsky J., Campoy C., Domellöf M., Embleton N., Fidler Mis N., Hulst J., Indrio F., Lapillonne A., Mølgaard C., et al. Young Child Formula: A Position Paper by the ESPGHAN Committee on Nutrition. J. Pediatric Gastroenterol. Nutr. 2018;66:177–185. doi:10.1097/MPG.0000000000001821. [PubMed] [CrossRef] [Google Scholar]

117. Services A.H. Healthy Infants and Young Children. [(accessed on 15 December 2020)]; Available online: https://www.albertahealthservices.ca/info/Page8567.aspx

118. 2015–2020 Dietary Guidelines|Health.Gov. [(accessed on 14 December 2020)]; Available online: https://health.gov/our-work/food-nutrition/2015-2020-dietary-guidelines/guidelines/#subnav-3

119. Marangoni F., Pellegrino L., Verduci E., Ghiselli A., Bernabei R., Calvani R., Cetin I., Giampietro M., Perticone F., Piretta L., et al. Cow’s Milk Consumption and Health: A Health Professional’s Guide. J. Am. Coll. Nutr. 2019;38:197–208. doi:10.1080/07315724.2018.1491016. [PubMed] [CrossRef] [Google Scholar]

Milk and Dairy Products: Good or Bad for Human Bone? Practical Dietary Recommendations for the Prevention and Management of Osteoporosis (2024)
Top Articles
Latest Posts
Article information

Author: Mrs. Angelic Larkin

Last Updated:

Views: 5926

Rating: 4.7 / 5 (67 voted)

Reviews: 82% of readers found this page helpful

Author information

Name: Mrs. Angelic Larkin

Birthday: 1992-06-28

Address: Apt. 413 8275 Mueller Overpass, South Magnolia, IA 99527-6023

Phone: +6824704719725

Job: District Real-Estate Facilitator

Hobby: Letterboxing, Vacation, Poi, Homebrewing, Mountain biking, Slacklining, Cabaret

Introduction: My name is Mrs. Angelic Larkin, I am a cute, charming, funny, determined, inexpensive, joyous, cheerful person who loves writing and wants to share my knowledge and understanding with you.