Dysfunctional brain-bone marrow communication: A paradigm shift in the pathophysiology of hypertension (2024)

Recently published papers of importance have been highlighted as:

• Of importance

•• Of major importance

1. Roberie DR, Elliott WJ. What is the prevalence of resistant hypertension in the United States? Curr Opin Cardiol. 2012;27(4):386–91. doi:10.1097/HCO.0b013e328353ad6e. [PubMed] [Google Scholar]

2. Mancia G, De Backer G, Dominiczak A, Cifkova R, fa*gard R, Germano G, et al. 2007 Guidelines for the Management of Arterial Hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2007;25(6):1105–87. doi:10.1097/HJH.0b013e3281fc975a. [PubMed] [Google Scholar]

3. Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, et al. Resistant hypertension: diagnosis, evaluation, and treatment. A scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension. 2008;51(6):1403–19. doi:10.1161/hypertensionaha.108.189141. [PubMed] [Google Scholar]

4••. Fisher JP, Paton JF. The sympathetic nervous system and blood pressure in humans: implications for hypertension. J Hum Hypertens. 2012;26(8):463–75. doi:10.1038/jhh.2011.66.
[This excellent review focuses on the neuro-adrenergic causes of human hypertension, clinical implications and therapeutic targeting.] [PubMed] [Google Scholar]

5. Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci. 2006;7(5):335–46. doi:10.1038/nrn1902. [PubMed] [Google Scholar]

6. Cates MJ, Dickinson CJ, Hart EC, Paton JF. Neurogenic hypertension and elevated vertebrobasilar arterial resistance: is there a causative link? Curr Hypertens Rep. 2012;14(3):261–9. doi:10.1007/s11906-012-0267-6. [PubMed] [Google Scholar]

7. Esler M. The 2009 Carl Ludwig Lecture: Pathophysiology of the human sympathetic nervous system in cardiovascular diseases: the transition from mechanisms to medical management. J Appl Physiol. 2010;108(2):227–37. doi:10.1152/japplphysiol.00832.2009. [PubMed] [Google Scholar]

8•. Dibona GF. Sympathetic nervous system and hypertension. Hypertension. 2013;61(3):556–60. doi:10.1161/hypertensionaha.111.00633.
[This review is an excellent guide to our current understanding of the role of the sympathetic nervous system in hypertension, both human and animal models.] [PubMed] [Google Scholar]

9. Esler M, Jennings G, Korner P, Willett I, Dudley F, Hasking G, et al. Assessment of human sympathetic nervous system activity from measurements of norepinephrine turnover. Hypertension. 1988;11(1):3–20. [PubMed] [Google Scholar]

10. Grassi G, Colombo M, Seravalle G, Spaziani D, Mancia G. Dissociation between muscle and skin sympathetic nerve activity in essential hypertension, obesity, and congestive heart failure. Hypertension. 1998;31(1):64–7. [PubMed] [Google Scholar]

11. Esler M, Lambert G, Jennings G. Increased regional sympathetic nervous activity in human hypertension: causes and consequences. J Hypertens Suppl. 1990;8(7):S53–7. [PubMed] [Google Scholar]

12. Anderson EA, Sinkey CA, Lawton WJ, Mark AL. Elevated sympathetic nerve activity in borderline hypertensive humans. Evidence from direct intraneural recordings. Hypertension. 1989;14(2):177–83. [PubMed] [Google Scholar]

13. Grassi G, Cattaneo BM, Seravalle G, Lanfranchi A, Mancia G. Baroreflex control of sympathetic nerve activity in essential and secondary hypertension. Hypertension. 1998;31(1):68–72. [PubMed] [Google Scholar]

14. Singh JP, Larson MG, Tsuji H, Evans JC, O'Donnell CJ, Levy D. Reduced heart rate variability and new-onset hypertension: insights into pathogenesis of hypertension: the Framingham Heart Study. Hypertension. 1998;32(2):293–7. [PubMed] [Google Scholar]

15•. Thiyagarajan R, Pal P, Pal GK, Subramanian SK, Bobby Z, Das AK, et al. Cardiovagal Modulation, Oxidative Stress, and Cardiovascular Risk Factors in Prehypertensive Subjects: Cross-Sectional Study. Am J Hypertens. 2013 doi:10.1093/ajh/hpt025.
[This study in human subjects underlies the importance of several risk factors in the development of hypertension.] [PubMed] [Google Scholar]

16. Schlaich MP, Lambert E, Kaye DM, Krozowski Z, Campbell DJ, Lambert G, et al. Sympathetic augmentation in hypertension: role of nerve firing, norepinephrine reuptake, and Angiotensin neuromodulation. Hypertension. 2004;43(2):169–75. doi:10.1161/01.hyp.0000103160.35395.9e. [PubMed] [Google Scholar]

17. Baum P, Petroff D, Classen J, Kiess W, Bluher S. Dysfunction of autonomic nervous system in childhood obesity: a cross-sectional study. PLoS One. 2013;8(1):e54546. doi:10.1371/journal.pone.0054546. [PMC free article] [PubMed] [Google Scholar]

18. Javorka M, Trunkvalterova Z, Tonhajzerova I, Lazarova Z, Javorkova J, Javorka K. Recurrences in heart rate dynamics are changed in patients with diabetes mellitus. Clin Physiol Funct Imaging. 2008;28(5):326–31. doi:10.1111/j.1475-097X.2008.00813.x. [PubMed] [Google Scholar]

19. Gerritsen J, Dekker JM, TenVoorde BJ, Kostense PJ, Heine RJ, Bouter LM, et al. Impaired autonomic function is associated with increased mortality, especially in subjects with diabetes, hypertension, or a history of cardiovascular disease: the Hoorn Study. Diabetes Care. 2001;24(10):1793–8. [PubMed] [Google Scholar]

20. Toschi-Dias E, Trombetta IC, Dias da Silva VJ, Maki-Nunes C, Cepeda FX, Alves MJ, et al. Time delay of baroreflex control and oscillatory pattern of sympathetic activity in patients with metabolic syndrome and obstructive sleep apnea. Am J Physiol Heart Circ Physiol. 2013 doi:10.1152/ajpheart.00848.2012. [PubMed] [Google Scholar]

21. Solini A, Ruilope LM. How can resistant hypertension be identified and prevented? Nat Rev Cardiol. 2013 doi:10.1038/nrcardio.2013.23. [PubMed] [Google Scholar]

22. Laurent S, Schlaich M, Esler M. New drugs, procedures, and devices for hypertension. Lancet. 2012;380(9841):591–600. doi:10.1016/s0140-6736(12)60825-3. [PubMed] [Google Scholar]

23. Fisher JP, Fadel PJ. Therapeutic strategies for targeting excessive central sympathetic activation in human hypertension. Exp Physiol. 2010;95(5):572–80. doi:10.1113/expphysiol.2009.047332. [PMC free article] [PubMed] [Google Scholar]

24. Morrissey DM, Brookes VS, Cooke WT. Sympathectomy in the treatment of hypertension; review of 122 cases. Lancet. 1953;1(6757):403–8. [PubMed] [Google Scholar]

25. Smithwick RH, Thompson JE. Splanchnicectomy for essential hypertension; results in 1,266 cases. J Am Med Assoc. 1953;152(16):1501–4. [PubMed] [Google Scholar]

26. Peet MM. Results of bilateral supradiaphragmatic splanchnicectomy for arterial hypertension. N Engl J Med. 1947;236(8):270–7. doi:10.1056/nejm194702202360802. [PubMed] [Google Scholar]

27. Polimeni A, Curcio A, Indolfi C. Renal sympathetic denervation for treating resistant hypertension. Circ J. 2013;77(4):857–63. [PubMed] [Google Scholar]

28. Froeschl M, Hadziomerovic A, Ruzicka M. Renal Sympathetic Denervation for Resistant Hypertension. Can J Cardiol. 2013 doi:10.1016/j.cjca.2013.02.019. [PubMed] [Google Scholar]

29. Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373(9671):1275–81. doi:10.1016/s0140-6736(09)60566-3. [PubMed] [Google Scholar]

30. Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, Bohm M. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet. 2010;376(9756):1903–9. doi:10.1016/s0140-6736(10)62039-9. [PubMed] [Google Scholar]

31. Schlaich MP, Sobotka PA, Krum H, Lambert E, Esler MD. Renal sympathetic-nerve ablation for uncontrolled hypertension. N Engl J Med. 2009;361(9):932–4. doi:10.1056/NEJMc0904179. [PubMed] [Google Scholar]

32••. Schlaich MP, Hering D, Sobotka PA, Krum H, Esler MD. Renal denervation in human hypertension: mechanisms, current findings, and future prospects. Curr Hypertens Rep. 2012;14(3):247–53. doi:10.1007/s11906-012-0264-9.
[This review discusses recent and promising advancements in renal denervation therapy in human hypertension.] [PubMed] [Google Scholar]

33. Mulder J, Hokfelt T, Knuepfer MM, Kopp UC. Renal Sensory and Sympathetic Nerves Reinnervate the Kidney in a Similar Time Dependent Fashion Following Renal Denervation in Rats. Am J Physiol Regul Integr Comp Physiol. 2013 doi:10.1152/ajpregu.00599.2012. [PMC free article] [PubMed] [Google Scholar]

34. Brinkmann J, Heusser K, Schmidt BM, Menne J, Klein G, Bauersachs J, et al. Catheter-based renal nerve ablation and centrally generated sympathetic activity in difficult-to-control hypertensive patients: prospective case series. Hypertension. 2012;60(6):1485–90. doi:10.1161/hypertensionaha.112.201186. [PubMed] [Google Scholar]

35. Esler M, Randall O, Bennett J, Zweifler A, Julius S, Rydelek P. Suppression of sympathetic nervous function in low-renin essential hypertension. Lancet. 1976;2(7977):115–8. [PubMed] [Google Scholar]

36. Wustmann K, Kucera JP, Scheffers I, Mohaupt M, Kroon AA, de Leeuw PW, et al. Effects of chronic baroreceptor stimulation on the autonomic cardiovascular regulation in patients with drug-resistant arterial hypertension. Hypertension. 2009;54(3):530–6. doi:10.1161/hypertensionaha.109.134023. [PubMed] [Google Scholar]

37. Scheffers IJ, Kroon AA, Schmidli J, Jordan J, Tordoir JJ, Mohaupt MG, et al. Novel baroreflex activation therapy in resistant hypertension: results of a European multi-center feasibility study. J Am Coll Cardiol. 2010;56(15):1254–8. doi:10.1016/j.jacc.2010.03.089. [PubMed] [Google Scholar]

38. Heusser K, Tank J, Engeli S, Diedrich A, Menne J, Eckert S, et al. Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension. 2010;55(3):619–26. doi:10.1161/hypertensionaha.109.140665. [PubMed] [Google Scholar]

39. Bisognano JD, Bakris G, Nadim MK, Sanchez L, Kroon AA, Schafer J, et al. Baroreflex activation therapy lowers blood pressure in patients with resistant hypertension: results from the double-blind, randomized, placebo-controlled rheos pivotal trial. J Am Coll Cardiol. 2011;58(7):765–73. doi:10.1016/j.jacc.2011.06.008. [PubMed] [Google Scholar]

40. Ng MM, Sica DA, Frishman WH. Rheos: an implantable carotid sinus stimulation device for the nonpharmacologic treatment of resistant hypertension. Cardiol Rev. 2011;19(2):52–7. doi:10.1097/CRD.0b013e3181f87921. [PubMed] [Google Scholar]

41. Green AL, Wang S, Owen SL, Xie K, Liu X, Paterson DJ, et al. Deep brain stimulation can regulate arterial blood pressure in awake humans. Neuroreport. 2005;16(16):1741–5. [PubMed] [Google Scholar]

42. Green AL, Wang S, Bittar RG, Owen SL, Paterson DJ, Stein JF, et al. Deep brain stimulation: a new treatment for hypertension? J Clin Neurosci. 2007;14(6):592–5. doi:10.1016/j.jocn.2006.04.015. [PubMed] [Google Scholar]

43. Carter HH, Dawson EA, Cable NT, Basnayake S, Aziz TZ, Green AL, et al. Deep brain stimulation of the periaqueductal grey induces vasodilation in humans. Hypertension. 2011;57(5):e24–5. doi:10.1161/hypertensionaha.111.170183. [PMC free article] [PubMed] [Google Scholar]

44. Pereira EA, Wang S, Paterson DJ, Stein JF, Aziz TZ, Green AL. Sustained reduction of hypertension by deep brain stimulation. J Clin Neurosci. 2010;17(1):124–7. doi:10.1016/j.jocn.2009.02.041. [PubMed] [Google Scholar]

45. Patel NK, Javed S, Khan S, Papouchado M, Malizia AL, Pickering AE, et al. Deep brain stimulation relieves refractory hypertension. Neurology. 2011;76(4):405–7. doi:10.1212/WNL.0b013e3182088108. [PMC free article] [PubMed] [Google Scholar]

46. Hyam JA, Kringelbach ML, Silburn PA, Aziz TZ, Green AL. The autonomic effects of deep brain stimulation--a therapeutic opportunity. Nat Rev Neurol. 2012;8(7):391–400. doi:10.1038/nrneurol.2012.100. [PubMed] [Google Scholar]

47. Green AL, Hyam JA, Williams C, Wang S, Shlugman D, Stein JF, et al. Intra-operative deep brain stimulation of the periaqueductal grey matter modulates blood pressure and heart rate variability in humans. Neuromodulation. 2010;13(3):174–81. doi:10.1111/j.1525-1403.2010.00274.x. [PubMed] [Google Scholar]

48. Sasaki S, Tanda S, Hatta T, Morimoto S, Takeda K, Kizu O, et al. Neurovascular decompression of the rostral ventrolateral medulla decreases blood pressure and sympathetic nerve activity in patients with refractory hypertension. J Clin Hypertens (Greenwich) 2011;13(11):818–20. doi:10.1111/j.1751-7176.2011.00522.x. [PMC free article] [PubMed] [Google Scholar]

49. Geiger H, Naraghi R, Schobel HP, Frank H, Sterzel RB, Fahlbusch R. Decrease of blood pressure by ventrolateral medullary decompression in essential hypertension. Lancet. 1998;352(9126):446–9. [PubMed] [Google Scholar]

50. Sesso HD, Buring JE, Rifai N, Blake GJ, Gaziano JM, Ridker PM. C-reactive protein and the risk of developing hypertension. JAMA. 2003;290(22):2945–51. doi:10.1001/jama.290.22.2945. [PubMed] [Google Scholar]

51. Bautista LE, Vera LM, Arenas IA, Gamarra G. Independent association between inflammatory markers (C-reactive protein, interleukin-6, and TNF-alpha) and essential hypertension. J Hum Hypertens. 2005;19(2):149–54. doi:10.1038/sj.jhh.1001785. [PubMed] [Google Scholar]

52. Lampert R, Bremner JD, Su S, Miller A, Lee F, Cheema F, et al. Decreased heart rate variability is associated with higher levels of inflammation in middle-aged men. Am Heart J. 2008;156(4):759, e1–7. doi:10.1016/j.ahj.2008.07.009. [PMC free article] [PubMed] [Google Scholar]

53•. Harrison DG, Guzik TJ, Lob HE, Madhur MS, Marvar PJ, Thabet SR, et al. Inflammation, immunity, and hypertension. Hypertension. 2011;57(2):132–40. doi:10.1161/hypertensionaha.110.163576.
[This review discusses recent findings on CNS control of inflammation and hypertension.] [PMC free article] [PubMed] [Google Scholar]

54. Roifman I, Beck PL, Anderson TJ, Eisenberg MJ, Genest J. Chronic inflammatory diseases and cardiovascular risk: a systematic review. Can J Cardiol. 2011;27(2):174–82. doi:10.1016/j.cjca.2010.12.040. [PubMed] [Google Scholar]

55. Celik T, Yuksel UC, Fici F, Celik M, Yaman H, Kilic S, et al. Vascular inflammation and aortic stiffness relate to early left ventricular diastolic dysfunction in prehypertension. Blood Press. 2013;22(2):94–100. doi:10.3109/08037051.2012.716580. [PubMed] [Google Scholar]

56. Chrysohoou C, Pitsavos C, Panagiotakos DB, Skoumas J, Stefanadis C. Association between prehypertension status and inflammatory markers related to atherosclerotic disease: The ATTICA Study. Am J Hypertens. 2004;17(7):568–73. doi:10.1016/j.amjhyper.2004.03.675. [PubMed] [Google Scholar]

57. Navarro-Gonzalez JF, Mora C, Muros M, Garcia J, Donate J, Cazana V. Relationship between inflammation and microalbuminuria in prehypertension. J Hum Hypertens. 2013;27(2):119–25. doi:10.1038/jhh.2011.118. [PubMed] [Google Scholar]

58. Ba D, Takeichi N, Kodama T, Kobayashi H. Restoration of T cell depression and suppression of blood pressure in spontaneously hypertensive rats (SHR) by thymus grafts or thymus extracts. J Immunol. 1982;128(3):1211–6. [PubMed] [Google Scholar]

59. Khraibi AA. Association between disturbances in the immune system and hypertension. Am J Hypertens. 1991;4(7 Pt 1):635–41. [PubMed] [Google Scholar]

60••. Marvar PJ, Vinh A, Thabet S, Lob HE, Geem D, Ressler KJ, et al. T lymphocytes and vascular inflammation contribute to stress-dependent hypertension. Biol Psychiatry. 2012;71(9):774–82. doi:10.1016/j.biopsych.2012.01.017.
[In this and reference [61•], authors determine that T-lymphocytes are essential in multiple animal models of hypertension.] [PMC free article] [PubMed] [Google Scholar]

61•. Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med. 2007;204(10):2449–60. doi:10.1084/jem.20070657.
[In this and reference [60••], authors determine that T-lymphocytes are essential in multiple animal models of hypertension.] [PMC free article] [PubMed] [Google Scholar]

62•. Barhoumi T, Kasal DA, Li MW, Shbat L, Laurant P, Neves MF, et al. T regulatory lymphocytes prevent angiotensin II-induced hypertension and vascular injury. Hypertension. 2011;57(3):469–76. doi:10.1161/hypertensionaha.110.162941.
[This report elucidates the roles of different T-lymphocyte populations, especifically regulatory T cell's ability to prevent hypertension.] [PubMed] [Google Scholar]

63. Kasal DA, Barhoumi T, Li MW, Yamamoto N, Zdanovich E, Rehman A, et al. T regulatory lymphocytes prevent aldosterone-induced vascular injury. Hypertension. 2012;59(2):324–30. doi:10.1161/hypertensionaha.111.181123. [PubMed] [Google Scholar]

64. Schiffrin EL. The Immune System: Role in Hypertension. Can J Cardiol. 2012 doi:10.1016/j.cjca.2012.06.009. [PubMed] [Google Scholar]

65. Li DJ, Evans RG, Yang ZW, Song SW, Wang P, Ma XJ, et al. Dysfunction of the cholinergic anti-inflammatory pathway mediates organ damage in hypertension. Hypertension. 2011;57(2):298–307. doi:10.1161/hypertensionaha.110.160077. [PubMed] [Google Scholar]

66. Miguel-Carrasco JL, Zambrano S, Blanca AJ, Mate A, Vazquez CM. Captopril reduces cardiac inflammatory markers in spontaneously hypertensive rats by inactivation of NF-kB. J Inflamm (Lond) 2010;7:21. doi:10.1186/1476-9255-7-21. [PMC free article] [PubMed] [Google Scholar]

67••. Harwani SC, Chapleau MW, Legge KL, Ballas ZK, Abboud FM. Neurohormonal modulation of the innate immune system is proinflammatory in the prehypertensive spontaneously hypertensive rat, a genetic model of essential hypertension. Circ Res. 2012;111(9):1190–7. doi:10.1161/circresaha.112.277475.
[The authors demonstrate that anti-inflammatory modulation of the innate immunes system in normotensive rats is reversed in pre hypertensive rats, attributed to increase sympathetic drive preceding the rise in blood pressure.] [PMC free article] [PubMed] [Google Scholar]

68. Ehrlich D, Humpel C. Chronic vascular risk factors (cholesterol, hom*ocysteine, ethanol) impair spatial memory, decline cholinergic neurons and induce blood-brain barrier leakage in rats in vivo. J Neurol Sci. 2012;322(1-2):92–5. doi:10.1016/j.jns.2012.07.002. [PMC free article] [PubMed] [Google Scholar]

69. Chen JK, Zhao T, Ni M, Li DJ, Tao X, Shen FM. Downregulation of alpha7 nicotinic acetylcholine receptor in two-kidney one-clip hypertensive rats. BMC Cardiovasc Disord. 2012;12:38. doi:10.1186/1471-2261-12-38. [PMC free article] [PubMed] [Google Scholar]

70. Yenari MA, Xu L, Tang XN, Qiao Y, Giffard RG. Microglia potentiate damage to blood-brain barrier constituents: improvement by minocycline in vivo and in vitro. Stroke. 2006;37(4):1087–93. doi:10.1161/01.STR.0000206281.77178.ac. [PubMed] [Google Scholar]

71. Liu B. Modulation of microglial pro-inflammatory and neurotoxic activity for the treatment of Parkinson's disease. AAPS J. 2006;8(3):E606–21. doi:10.1208/aapsj080369. [PMC free article] [PubMed] [Google Scholar]

72. Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8(1):57–69. doi:10.1038/nrn2038. [PubMed] [Google Scholar]

73. Lob HE, Marvar PJ, Guzik TJ, Sharma S, McCann LA, Weyand C, et al. Induction of hypertension and peripheral inflammation by reduction of extracellular superoxide dismutase in the central nervous system. Hypertension. 2010;55(2):277–83. 6, 83. doi:10.1161/hypertensionaha.109.142646. [PMC free article] [PubMed] [Google Scholar]

74••. Lob HE, Schultz D, Marvar PJ, Davisson RL, Harrison DG. Role of the NADPH Oxidases in the Subfornical Organ in Angiotensin II-Induced Hypertension. Hypertension. 2013;61(2):382–7. doi:10.1161/hypertensionaha.111.00546.
[This report indicates a critical role for central oxidative stress in the CNS modulation of hypertension and peripheral inflammation using a genetic p22phox mouse model.] [PMC free article] [PubMed] [Google Scholar]

75. Marvar PJ, Lob H, Vinh A, Zarreen F, Harrison DG. The central nervous system and inflammation in hypertension. Curr Opin Pharmacol. 2011;11(2):156–61. doi:10.1016/j.coph.2010.12.001. [PMC free article] [PubMed] [Google Scholar]

76. Shi P, Raizada MK, Sumners C. Brain cytokines as neuromodulators in cardiovascular control. Clin Exp Pharmacol Physiol. 2010;37(2):e52–7. doi:10.1111/j.1440-1681.2009.05234.x. [PMC free article] [PubMed] [Google Scholar]

77. Shi P, Diez-Freire C, Jun JY, Qi Y, Katovich MJ, Li Q, et al. Brain microglial cytokines in neurogenic hypertension. Hypertension. 2010;56(2):297–303. doi:10.1161/hypertensionaha.110.150409. [PMC free article] [PubMed] [Google Scholar]

78••. Jun JY, Zubcevic J, Qi Y, Afzal A, Carvajal JM, Thinschmidt JS, et al. Brain-mediated dysregulation of the bone marrow activity in angiotensin II-induced hypertension. Hypertension. 2012;60(5):1316–23. doi:10.1161/hypertensionaha.112.199547.
[This study indicates that specific inhibition of central oxidative stress is able to attenuate hypertension, inhibit microglial activation in the PVN, and normalize the release of peripheral bone marrow-derived inflammatory cells.] [PMC free article] [PubMed] [Google Scholar]

79••. Waki H, Hendy EB, Hindmarch CC, Gouraud S, Toward M, Kasparov S, et al. Excessive leukotriene B4 in nucleus tractus solitarii is prohypertensive in spontaneously hypertensive rats. Hypertension. 2013;61(1):194–201. doi:10.1161/hypertensionaha.112.192252.
[In this report, investigators elucidate brain stem inflammatory reactions to be mechanistically related to neurogenic hypertension.] [PMC free article] [PubMed] [Google Scholar]

80••. Cardinale JP, Sriramula S, Mariappan N, Agarwal D, Francis J. Angiotensin II-induced hypertension is modulated by nuclear factor-kappaBin the paraventricular nucleus. Hypertension. 2012;59(1):113–21. doi:10.1161/hypertensionaha.111.182154.
[This report strengthens the hypothesis that inflammatory responses in the PVN, in this case specifically NF-κB, play an important pro-hypertensive role via modulation of the renin angiotensin system.] [PMC free article] [PubMed] [Google Scholar]

81. Ferrario CM, Strawn WB. Role of the renin-angiotensin-aldosterone system and proinflammatory mediators in cardiovascular disease. Am J Cardiol. 2006;98(1):121–8. doi:10.1016/j.amjcard.2006.01.059. [PubMed] [Google Scholar]

82. Patel BM, Mehta AA. Aldosterone and angiotensin: Role in diabetes and cardiovascular diseases. Eur J Pharmacol. 2012;697(1-3):1–12. doi:10.1016/j.ejphar.2012.09.034. [PubMed] [Google Scholar]

83. Marc Y, Llorens-Cortes C. The role of the brain renin-angiotensin system in hypertension: implications for new treatment. Prog Neurobiol. 2011;95(2):89–103. doi:10.1016/j.pneurobio.2011.06.006. [PubMed] [Google Scholar]

84. Agarwal D, Dange RB, Raizada MK, Francis J. Angiotensin II causes imbalance between pro- and anti-inflammatory cytokines by modulating GSK-3beta in neuronal culture. Br J Pharmacol. 2013 doi:10.1111/bph.12177. [PMC free article] [PubMed] [Google Scholar]

85. Zubcevic J, Jun JY, Lamont G, Murca TM, Shi P, Yuan W, et al. Nucleus of the Solitary Tract (Pro)Renin Receptor-Mediated Antihypertensive Effect Involves Nuclear Factor-kappaB-Cytokine Signaling in the Spontaneously Hypertensive Rat. Hypertension. 2013 doi:10.1161/hypertensionaha.111.199836. [PubMed] [Google Scholar]

86••. Shan Z, Zubcevic J, Shi P, Jun JY, Dong Y, Murca TM, et al. Chronic Knockdown of the Nucleus of the Solitary Tract AT1 Receptors Increases Blood Inflammatory-Endothelial Progenitor Cell Ratio and Exacerbates Hypertension in the Spontaneously Hypertensive Rat. Hypertension. 2013 doi:10.1161/hypertensionaha.111.00156.
[This study indicates a connection between central RAS and the peripheral immune response in hypertension pathophysiology.] [PMC free article] [PubMed] [Google Scholar]

87•. Marvar PJ, Thabet SR, Guzik TJ, Lob HE, McCann LA, Weyand C, et al. Central and peripheral mechanisms of T-lymphocyte activation and vascular inflammation produced by angiotensin II-induced hypertension. Circ Res. 2010;107(2):263–70. doi:10.1161/circresaha.110.217299.
[The central effects of angiotensin II are critical for peripheral inflammatory responses, including T cell activation. This study proposes a feed-forward mechanisms underlying the connection between central RAS and peripheral inflammation.] [PMC free article] [PubMed] [Google Scholar]

88. Perry VH, Nicoll JA, Holmes C. Microglia in neurodegenerative disease. Nat Rev Neurol. 2010;6(4):193–201. doi:10.1038/nrneurol.2010.17. [PubMed] [Google Scholar]

89. Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308(5726):1314–8. doi:10.1126/science.1110647. [PubMed] [Google Scholar]

90••. Aguzzi A, Barres BA, Bennett ML. Microglia: scapegoat, saboteur, or something else? Science. 2013;339(6116):156–61. doi:10.1126/science.1227901.
[This excellent review focuses on the role of microglia, ranging from the resting state to the different states of activation and neurotoxicity. The authors discuss microglia in several diseases and emphasize both the beneficial and detrimental roles of these cells in the CNS.] [PMC free article] [PubMed] [Google Scholar]

91. Burguillos MA, Deierborg T, Kavanagh E, Persson A, Hajji N, Garcia-Quintanilla A, et al. Caspase signalling controls microglia activation and neurotoxicity. Nature. 2011;472(7343):319–24. doi:10.1038/nature09788. [PubMed] [Google Scholar]

92. Aarum J, Sandberg K, Haeberlein SL, Persson MA. Migration and differentiation of neural precursor cells can be directed by microglia. Proc Natl Acad Sci U S A. 2003;100(26):15983–8. doi:10.1073/pnas.2237050100. [PMC free article] [PubMed] [Google Scholar]

93. Liu B, Gao HM, Wang JY, Jeohn GH, Cooper CL, Hong JS. Role of nitric oxide in inflammation-mediated neurodegeneration. Ann N Y Acad Sci. 2002;962:318–31. [PubMed] [Google Scholar]

94. Zubcevic J, Waki H, Raizada MK, Paton JF. Autonomic-immune-vascular interaction: an emerging concept for neurogenic hypertension. Hypertension. 2011;57(6):1026–33. doi:10.1161/hypertensionaha.111.169748. [PMC free article] [PubMed] [Google Scholar]

95•. de Kloet AD, Krause EG, Shi PD, Zubcevic J, Raizada MK, Sumners C. Neuroimmune communication in hypertension and obesity: A new therapeutic angle? Pharmacol Ther. 2013 doi:10.1016/j.pharmthera.2013.02.005.
[This review focuses on the interaction between the immune, renin-angiotensin, and autonomic nervous systems.] [PMC free article] [PubMed] [Google Scholar]

96. Marvar PJ, Harrison DG. Stress-dependent hypertension and the role of T lymphocytes. Exp Physiol. 2012;97(11):1161–7. doi:10.1113/expphysiol.2011.061507. [PMC free article] [PubMed] [Google Scholar]

97. Ippoliti F, Canitano N, Businaro R. Stress and obesity as risk factors in cardiovascular diseases: a neuroimmune perspective. J Neuroimmune Pharmacol. 2013;8(1):212–26. doi:10.1007/s11481-012-9432-6. [PubMed] [Google Scholar]

98. Lu XT, Zhao YX, Zhang Y, Jiang F. Psychological stress, vascular inflammation and atherogenesis: potential roles of circulating cytokines. J Cardiovasc Pharmacol. 2013 doi:10.1097/FJC.0b013e3182858fac. [PubMed] [Google Scholar]

99. Rosenkranz MA, Davidson RJ, Maccoon DG, Sheridan JF, Kalin NH, Lutz A. A comparison of mindfulness-based stress reduction and an active control in modulation of neurogenic inflammation. Brain Behav Immun. 2013;27(1):174–84. doi:10.1016/j.bbi.2012.10.013. [PMC free article] [PubMed] [Google Scholar]

100. Wong K, Park HT, Wu JY, Rao Y. Slit proteins: molecular guidance cues for cells ranging from neurons to leukocytes. Curr Opin Genet Dev. 2002;12(5):583–91. [PubMed] [Google Scholar]

101••. Scheiermann C, Kunisaki Y, Lucas D, Chow A, Jang JE, Zhang D, et al. Adrenergic nerves govern circadian leukocyte recruitment to tissues. Immunity. 2012;37(2):290–301. doi:10.1016/j.immuni.2012.05.021.
[This report underlies the clinical importance of autonomic modulation on circadian function of immune cells.] [PMC free article] [PubMed] [Google Scholar]

102. Yellowlees Douglas J, Bhatwadekar AD, Li Calzi S, Shaw LC, Carnegie D, Caballero S, et al. Bone marrow-CNS connections: implications in the pathogenesis of diabetic retinopathy. Prog Retin Eye Res. 2012;31(5):481–94. doi:10.1016/j.preteyeres.2012.04.005. [PMC free article] [PubMed] [Google Scholar]

103. Simms AE, Paton JF, Pickering AE, Allen AM. Amplified respiratory-sympathetic coupling in the spontaneously hypertensive rat: does it contribute to hypertension? J Physiol. 2009;587(Pt 3):597–610. doi:10.1113/jphysiol.2008.165902. [PMC free article] [PubMed] [Google Scholar]

104. Ganta CK, Lu N, Helwig BG, Blecha F, Ganta RR, Zheng L, et al. Central angiotensin II-enhanced splenic cytokine gene expression is mediated by the sympathetic nervous system. Am J Physiol Heart Circ Physiol. 2005;289(4):H1683–91. doi:10.1152/ajpheart.00125.2005. [PubMed] [Google Scholar]

105. Crowley SD. The Cooperative Roles of Inflammation and Oxidative Stress in the Pathogenesis of Hypertension. Antioxid Redox Signal. 2013 doi:10.1089/ars.2013.5258. [PMC free article] [PubMed] [Google Scholar]

106•. Abboud FM, Harwani SC, Chapleau MW. Autonomic neural regulation of the immune system: implications for hypertension and cardiovascular disease. Hypertension. 2012;59(4):755–62. doi:10.1161/hypertensionaha.111.186833.
[This excellent review focuses on the autonomic modulation of the immune system, emphasizing that the autonomic system is a powerful regulator of the immune system in the “death” and “survival” triangles circuitry of cardiovascular disease.] [PMC free article] [PubMed] [Google Scholar]

107••. Dutta P, Courties G, Wei Y, Leuschner F, Gorbatov R, Robbins CS, et al. Myocardial infarction accelerates atherosclerosis. Nature. 2012;487(7407):325–9. doi:10.1038/nature11260.
[This intriguing report provides novel insight into the progression of cardiovascular disease, particularly the role of the sympathetic nervous system in recruitment of hematopoietic cells from the bone marrow.] [PMC free article] [PubMed] [Google Scholar]

108. Wang YY, Lin SY, Chuang YH, Chen CJ, Tung KC, Sheu WH. Adipose proinflammatory cytokine expression through sympathetic system is associated with hyperglycemia and insulin resistance in a rat ischemic stroke model. Am J Physiol Endocrinol Metab. 2011;300(1):E155–63. doi:10.1152/ajpendo.00301.2010. [PubMed] [Google Scholar]

109. Bartness TJ, Song CK. Brain-adipose tissue neural crosstalk. Physiol Behav. 2007;91(4):343–51. doi:10.1016/j.physbeh.2007.04.002. [PMC free article] [PubMed] [Google Scholar]

110. Bartness TJ, Song CK. Thematic review series: adipocyte biology. Sympathetic and sensory innervation of white adipose tissue. J Lipid Res. 2007;48(8):1655–72. doi:10.1194/jlr.R700006-JLR200. [PubMed] [Google Scholar]

111. Mendez-Ferrer S, Lucas D, Battista M, Frenette PS. Haematopoietic stem cell release is regulated by circadian oscillations. Nature. 2008;452(7186):442–7. doi:10.1038/nature06685. [PubMed] [Google Scholar]

112. Muller WA. Regulate globally, act locally: adrenergic nerves promote leukocyte recruitment. Immunity. 2012;37(2):189–91. doi:10.1016/j.immuni.2012.08.004. [PMC free article] [PubMed] [Google Scholar]

113. Haus E, Smolensky MH. Biologic rhythms in the immune system. Chronobiol Int. 1999;16(5):581–622. [PubMed] [Google Scholar]

114. Beaule C, Arvanitogiannis A, Amir S. Light suppresses Fos expression in the shell region of the suprachiasmatic nucleus at dusk and dawn: implications for photic entrainment of circadian rhythms. Neuroscience. 2001;106(2):249–54. [PubMed] [Google Scholar]

115. Klein DC, Moore RY, Reppert SM. Suprachiasmatic Nucleus: The Mind's Clock. Oxford University Press; USA: 1991. [Google Scholar]

116. Ralph MR, Foster RG, Davis FC, Menaker M. Transplanted suprachiasmatic nucleus determines circadian period. Science. 1990;247(4945):975–8. [PubMed] [Google Scholar]

117. Maury E, Ramsey KM, Bass J. Circadian rhythms and metabolic syndrome: from experimental genetics to human disease. Circ Res. 2010;106(3):447–62. doi:10.1161/circresaha.109.208355. [PMC free article] [PubMed] [Google Scholar]

118. Muller JE, Stone PH, Turi ZG, Rutherford JD, Czeisler CA, Parker C, et al. Circadian variation in the frequency of onset of acute myocardial infarction. N Engl J Med. 1985;313(21):1315–22. doi:10.1056/nejm198511213132103. [PubMed] [Google Scholar]

119••. Andersson U, Tracey KJ. Neural reflexes in inflammation and immunity. J Exp Med. 2012;209(6):1057–68. doi:10.1084/jem.20120571.
[This review cohesively focuses on recent findings underlying the neural immune reflex in health and disease.] [PMC free article] [PubMed] [Google Scholar]

120. Kiguchi N, Kobayashi Y, Maeda T, Tominaga S, Nakamura J, f*ckazawa Y, et al. Activation of nicotinic acetylcholine receptors on bone marrow-derived cells relieves neuropathic pain accompanied by peripheral neuroinflammation. Neurochem Int. 2012;61(7):1212–9. doi:10.1016/j.neuint.2012.09.001. [PubMed] [Google Scholar]

121. Thayer JF, Loerbroks A, Sternberg EM. Inflammation and cardiorespiratory control: the role of the vagus nerve. Respir Physiol Neurobiol. 2011;178(3):387–94. doi:10.1016/j.resp.2011.05.016. [PubMed] [Google Scholar]

122. Yamakawa K, Matsumoto N, Imamura Y, Muroya T, Yamada T, Nakagawa J, et al. Electrical vagus nerve stimulation attenuates systemic inflammation and improves survival in a rat heatstroke model. PLoS One. 2013;8(2):e56728. doi:10.1371/journal.pone.0056728. [PMC free article] [PubMed] [Google Scholar]

123•. Lujan HL, Dicarlo SE. Physical activity, by enhancing parasympathetic tone and activating the cholinergic anti-inflammatory pathway, is a therapeutic strategy to restrain chronic inflammation and prevent many chronic diseases. Med Hypotheses. 2013 doi:10.1016/j.mehy.2013.01.014.
[Authors postulate an interesting hypothesis, suggesting that exercise enhances parasympathetic tone and can dampen and even prevent chronic inflammatory diseases.] [PubMed] [Google Scholar]

124. Zhao YX, He W, Jing XH, Liu JL, Rong PJ, Ben H, et al. Transcutaneous auricular vagus nerve stimulation protects endotoxemic rat from lipopolysaccharide-induced inflammation. Evid Based Complement Alternat Med. 2012;2012:627023. doi:10.1155/2012/627023. [PMC free article] [PubMed] [Google Scholar]

125••. Pavlov VA, Tracey KJ. The vagus nerve and the inflammatory reflex--linking immunity and metabolism. Nat Rev Endocrinol. 2012;8(12):743–54. doi:10.1038/nrendo.2012.189.
[This review focuses on the interaction between the dysregulation of the vagal inflammatory relfex and obesity-related inflammation and complications.] [PMC free article] [PubMed] [Google Scholar]

126. Erin N, Duymus O, Ozturk S, Demir N. Activation of vagus nerve by semapimod alters substance P levels and decreases breast cancer metastasis. Regul Pept. 2012;179(1-3):101–8. doi:10.1016/j.regpep.2012.08.001. [PubMed] [Google Scholar]

127. Dustin ML. Signaling at neuro/immune synapses. J Clin Invest. 2012;122(4):1149–55. doi:10.1172/jci58705. [PMC free article] [PubMed] [Google Scholar]

128. Huston JM. The vagus nerve and the inflammatory reflex: wandering on a new treatment paradigm for systemic inflammation and sepsis. Surg Infect (Larchmt) 2012;13(4):187–93. doi:10.1089/sur.2012.126. [PubMed] [Google Scholar]

129. Rosas-Ballina M, Tracey KJ. Cholinergic control of inflammation. J Intern Med. 2009;265(6):663–79. doi:10.1111/j.1365-2796.2009.02098.x. [PMC free article] [PubMed] [Google Scholar]

130. Goehler LE, Relton JK, Dripps D, Kiechle R, Tartaglia N, Maier SF, et al. Vagal paraganglia bind biotinylated interleukin-1 receptor antagonist: a possible mechanism for immune-to-brain communication. Brain Res Bull. 1997;43(3):357–64. [PubMed] [Google Scholar]

131. Thayer JF, Sternberg EM. Neural aspects of immunomodulation: focus on the vagus nerve. Brain Behav Immun. 2010;24(8):1223–8. doi:10.1016/j.bbi.2010.07.247. [PMC free article] [PubMed] [Google Scholar]

132. Rosas-Ballina M, Ochani M, Parrish WR, Ochani K, Harris YT, Huston JM, et al. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc Natl Acad Sci U S A. 2008;105(31):11008–13. doi:10.1073/pnas.0803237105. [PMC free article] [PubMed] [Google Scholar]

133. Berthoud HR, Powley TL. Characterization of vagal innervation to the rat celiac, suprarenal and mesenteric ganglia. J Auton Nerv Syst. 1993;42(2):153–69. [PubMed] [Google Scholar]

134. Berthoud HR, Powley TL. Interaction between parasympathetic and sympathetic nerves in prevertebral ganglia: morphological evidence for vagal efferent innervation of ganglion cells in the rat. Microsc Res Tech. 1996;35(1):80–6. doi:10.1002/(sici)1097-0029(19960901)35:1<80::aid-jemt7>3.0.co;2-w. [PubMed] [Google Scholar]

135. Kees MG, Pongratz G, Kees F, Scholmerich J, Straub RH. Via beta-adrenoceptors, stimulation of extrasplenic sympathetic nerve fibers inhibits lipopolysaccharide-induced TNF secretion in perfused rat spleen. J Neuroimmunol. 2003;145(1-2):77–85. [PubMed] [Google Scholar]

136. Olofsson PS, Rosas-Ballina M, Levine YA, Tracey KJ. Rethinking inflammation: neural circuits in the regulation of immunity. Immunol Rev. 2012;248(1):188–204. doi:10.1111/j.1600-065X.2012.01138.x. [PMC free article] [PubMed] [Google Scholar]

137. Matteoli G, Boeckxstaens GE. The vagal innervation of the gut and immune homeostasis. Gut. 2012 doi:10.1136/gutjnl-2012-302550. [PMC free article] [PubMed] [Google Scholar]

138. Wehner S, Vilz TO, Sommer N, Sielecki T, Hong GS, Lysson M, et al. The novel orally active guanylhydrazone CPSI-2364 prevents postoperative ileus in mice independently of anti-inflammatory vagus nerve signaling. Langenbecks Arch Surg. 2012;397(7):1139–47. doi:10.1007/s00423-012-0989-6. [PubMed] [Google Scholar]

139. Okamoto T, Kurahashi K, Fujiwara M. Cholinergic transmission in the superior cervical ganglion reinnervated by peripheral vagal stump cut below the nodose ganglion in cats. J Pharmacol Exp Ther. 1988;245(3):990–4. [PubMed] [Google Scholar]

140. Rosas-Ballina M, Tracey KJ. The neurology of the immune system: neural reflexes regulate immunity. Neuron. 2009;64(1):28–32. doi:10.1016/j.neuron.2009.09.039. [PMC free article] [PubMed] [Google Scholar]

141. Tabarowski Z, Gibson-Berry K, Felten SY. Noradrenergic and peptidergic innervation of the mouse femur bone marrow. Acta Histochem. 1996;98(4):453–7. doi:10.1016/s0065-1281(96)80013-4. [PubMed] [Google Scholar]

142. Mach DB, Rogers SD, Sabino MC, Luger NM, Schwei MJ, Pomonis JD, et al. Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience. 2002;113(1):155–66. [PubMed] [Google Scholar]

143. Amadesi S, Reni C, Katare R, Meloni M, Oikawa A, Beltrami AP, et al. Role for substance p-based nociceptive signaling in progenitor cell activation and angiogenesis during ischemia in mice and in human subjects. Circulation. 2012;125(14):1774–86, S1-19. doi:10.1161/circulationaha.111.089763. [PMC free article] [PubMed] [Google Scholar]

144•. Jimenez-Andrade JM, Mantyh WG, Bloom AP, Xu H, Ferng AS, Dussor G, et al. A phenotypically restricted set of primary afferent nerve fibers innervate the bone versus skin: therapeutic opportunity for treating skeletal pain. Bone. 2010;46(2):306–13. doi:10.1016/j.bone.2009.09.013.
[This study indicates the profile of primary afferent nerve fibers innervating the bone and marrow.] [PMC free article] [PubMed] [Google Scholar]

145. Castaneda-Corral G, Jimenez-Andrade JM, Bloom AP, Taylor RN, Mantyh WG, Kaczmarska MJ, et al. The majority of myelinated and unmyelinated sensory nerve fibers that innervate bone express the tropomyosin receptor kinase A. Neuroscience. 2011;178:196–207. doi:10.1016/j.neuroscience.2011.01.039. [PMC free article] [PubMed] [Google Scholar]

146. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139(2):267–84. doi:10.1016/j.cell.2009.09.028. [PMC free article] [PubMed] [Google Scholar]

147. Todd AJ. Neuronal circuitry for pain processing in the dorsal horn. Nat Rev Neurosci. 2010;11(12):823–36. doi:10.1038/nrn2947. [PMC free article] [PubMed] [Google Scholar]

148. Pickering AE, Boscan P, Paton JF. Nociception attenuates parasympathetic but not sympathetic baroreflex via NK1 receptors in the rat nucleus tractus solitarii. J Physiol. 2003;551(Pt 2):589–99. doi:10.1113/jphysiol.2003.046615. [PMC free article] [PubMed] [Google Scholar]

149. Boscan P, Kasparov S, Paton JF. Somatic nociception activates NK1 receptors in the nucleus tractus solitarii to attenuate the baroreceptor cardiac reflex. Eur J Neurosci. 2002;16(5):907–20. [PubMed] [Google Scholar]

150••. Suzuki A, Shimura M. Changes in blood pressure induced by electrical stimulation of the femur in anesthetized rats. Auton Neurosci. 2010;158(1-2):39–43. doi:10.1016/j.autneu.2010.05.012.
[This report indicates a valuable connection between the bone marrowprimary afferents and blood pressure control.] [PubMed] [Google Scholar]

151. Jimenez-Andrade JM, Mantyh PW. Sensory and sympathetic nerve fibers undergo sprouting and neuroma formation in the painful arthritic joint of geriatric mice. Arthritis Res Ther. 2012;14(3):R101. doi:10.1186/ar3826. [PMC free article] [PubMed] [Google Scholar]

152. Ghilardi JR, Freeman KT, Jimenez-Andrade JM, Coughlin KA, Kaczmarska MJ, Castaneda-Corral G, et al. Neuroplasticity of sensory and sympathetic nerve fibers in a mouse model of a painful arthritic joint. Arthritis Rheum. 2012;64(7):2223–32. doi:10.1002/art.34385. [PMC free article] [PubMed] [Google Scholar]

153••. Lautner RQ, Villela DC, Fraga-Silva RA, Silva NC, Verano-Braga T, Costa-Fraga F, et al. Discovery and Characterization of Alamandine, a Novel Component of the Renin-Angiotensin System. Circ Res. 2013 doi:10.1161/circresaha.113.301077.
[This is the first report of the novel component of the RAS: alamandine. The authors describe its similarity to Ang(1-7) and postulate the therapeutic value of this novel peptide.] [PubMed] [Google Scholar]

154. Rau KK, McIlwrath SL, Wang H, Lawson JJ, Jankowski MP, Zylka MJ, et al. Mrgprd enhances excitability in specific populations of cutaneous murine polymodal nociceptors. J Neurosci. 2009;29(26):8612–9. doi:10.1523/jneurosci.1057-09.2009. [PMC free article] [PubMed] [Google Scholar]

155. Zylka MJ, Rice FL, Anderson DJ. Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd. Neuron. 2005;45(1):17–25. doi:10.1016/j.neuron.2004.12.015. [PubMed] [Google Scholar]

156. Avula LR, Buckinx R, Alpaerts KH, Adriaensen D, Nassauw LV, Timmermans J-P. 879 The Mas-Related Gene Receptor MrgD Modulates Mucosal Mast Cell Infiltration During Intestinal Inflammation. Gastroenterology. 2012;142(5):S-152. [Google Scholar]

157. Avula LR, Buckinx R, Favoreel H, Cox E, Adriaensen D, Van Nassauw L, et al. Expression and distribution patterns of Mas-related gene receptor subtypes A-H in the mouse intestine: inflammation-induced changes. Histochem Cell Biol. 2013 doi:10.1007/s00418-013-1086-9. [PubMed] [Google Scholar]

158. Anand U, Facer P, Yiangou Y, Sinisi M, Fox M, McCarthy T, et al. Angiotensin II type 2 receptor (AT(2) R) localization and antagonist-mediated inhibition of capsaicin responses and neurite outgrowth in human and rat sensory neurons. Eur J Pain. 2012 doi:10.1002/j.1532-2149.2012.00269.x. [PMC free article] [PubMed] [Google Scholar]

159. Patil J, Schwab A, Nussberger J, Schaffner T, Saavedra JM, Imboden H. Intraneuronal angiotensinergic system in rat and human dorsal root ganglia. Regul Pept. 2010;162(1-3):90–8. doi:10.1016/j.regpep.2010.03.004. [PMC free article] [PubMed] [Google Scholar]

160. Feuerer M, Beckhove P, Garbi N, Mahnke Y, Limmer A, Hommel M, et al. Bone marrow as a priming site for T-cell responses to blood-borne antigen. Nat Med. 2003;9(9):1151–7. doi:10.1038/nm914. [PubMed] [Google Scholar]

161. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. 1999;85(3):221–8. [PubMed] [Google Scholar]

162. Hristov M, Zernecke A, Bidzhekov K, Liehn EA, Shagdarsuren E, Ludwig A, et al. Importance of CXC chemokine receptor 2 in the homing of human peripheral blood endothelial progenitor cells to sites of arterial injury. Circ Res. 2007;100(4):590–7. doi:10.1161/01.res.0000259043.42571.68. [PubMed] [Google Scholar]

163. Zhu XY, Urbieta-Caceres V, Krier JD, Textor SC, Lerman A, Lerman LO. Mesenchymal stem cells and endothelial progenitor cells decrease renal injury in experimental swine renal artery stenosis through different mechanisms. Stem Cells. 2013;31(1):117–25. doi:10.1002/stem.1263. [PMC free article] [PubMed] [Google Scholar]

164. Rabelink TJ, de Boer HC, de Koning EJ, van Zonneveld AJ. Endothelial progenitor cells: more than an inflammatory response? Arterioscler Thromb Vasc Biol. 2004;24(5):834–8. doi:10.1161/01.ATV.0000124891.57581.9f. [PubMed] [Google Scholar]

165. Aicher A, Zeiher AM, Dimmeler S. Mobilizing endothelial progenitor cells. Hypertension. 2005;45(3):321–5. doi:10.1161/01.HYP.0000154789.28695.ea. [PubMed] [Google Scholar]

166••. Fujisaki J, Wu J, Carlson AL, Silberstein L, Putheti P, Larocca R, et al. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature. 2011;474(7350):216–9. doi:10.1038/nature10160.
[The authors use an interesting technique to image individual populations and demonstrate the importance of regulatory T cells in maintaining the stem-cell niche in the bone marrow.] [PMC free article] [PubMed] [Google Scholar]

167. Ding L, Morrison SJ. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature. 2013;495(7440):231–5. doi:10.1038/nature11885. [PMC free article] [PubMed] [Google Scholar]

168. Andreou I, Tousoulis D, Tentolouris C, Antoniades C, Stefanadis C. Potential role of endothelial progenitor cells in the pathophysiology of heart failure: clinical implications and perspectives. Atherosclerosis. 2006;189(2):247–54. doi:10.1016/j.atherosclerosis.2006.06.021. [PubMed] [Google Scholar]

169••. Galasso G, De Rosa R, Ciccarelli M, Sorriento D, Del Giudice C, Strisciuglio T, et al. beta2-Adrenergic Receptor Stimulation Improves Endothelial Progenitor Cells Mediated Ischemic Neoangiogenesis. Circ Res. 2013 doi:10.1161/circresaha.111.300152.
[To our knowledge, this is the first evidence of functional beta-2 adrenergic receptors being expressed by endothelial progenitor cells. This study provides novel insight into the mechanisms of central control of EPC function.] [PubMed] [Google Scholar]

170. London GM, Marchais SJ, Guerin AP, Boutouyrie P, Metivier F, de Vernejoul MC. Association of bone activity, calcium load, aortic stiffness, and calcifications in ESRD. J Am Soc Nephrol. 2008;19(9):1827–35. doi:10.1681/asn.2007050622. [PMC free article] [PubMed] [Google Scholar]

171. Toussaint ND, Lau KK, Strauss BJ, Polkinghorne KR, Kerr PG. Associations between vascular calcification, arterial stiffness and bone mineral density in chronic kidney disease. Nephrol Dial Transplant. 2008;23(2):586–93. doi:10.1093/ndt/gfm660. [PubMed] [Google Scholar]

172. Adragao T, Herberth J, Monier-Faugere MC, Branscum AJ, Ferreira A, Frazao JM, et al. Low bone volume--a risk factor for coronary calcifications in hemodialysis patients. Clin J Am Soc Nephrol. 2009;4(2):450–5. doi:10.2215/cjn.01870408. [PMC free article] [PubMed] [Google Scholar]

173. Feitelson JB, Kulenovic E, Beck DJ, Harris PD, Passmore JC, Malkani AL, et al. Endogenous norepinephrine regulates blood flow to the intact rat tibia. J Orthop Res. 2002;20(2):391–6. doi:10.1016/s0736-0266(01)00121-8. [PubMed] [Google Scholar]

174. Lafa*ge-Proust MH, Prisby R, Roche B, Vico L. Bone vascularization and remodeling. Joint Bone Spine. 2010;77(6):521–4. doi:10.1016/j.jbspin.2010.09.009. [PubMed] [Google Scholar]

Dysfunctional brain-bone marrow communication: A paradigm shift in the pathophysiology of hypertension (2024)
Top Articles
Latest Posts
Article information

Author: Rob Wisoky

Last Updated:

Views: 6106

Rating: 4.8 / 5 (68 voted)

Reviews: 91% of readers found this page helpful

Author information

Name: Rob Wisoky

Birthday: 1994-09-30

Address: 5789 Michel Vista, West Domenic, OR 80464-9452

Phone: +97313824072371

Job: Education Orchestrator

Hobby: Lockpicking, Crocheting, Baton twirling, Video gaming, Jogging, Whittling, Model building

Introduction: My name is Rob Wisoky, I am a smiling, helpful, encouraging, zealous, energetic, faithful, fantastic person who loves writing and wants to share my knowledge and understanding with you.